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 This study investigates the value of scale-space representations of spatial features 

for the identification and mapping of invasive plant species in high-resolution multi-

spectral imagery. Scale-space representations combine the spatial domain with a scale 

dimension such that spatial features can be represented at multiple-spatial scales. In this 

work, Gaussian pyramids (GPs) are constructed to create discrete representations of the 

spatial features across the scale-space. A case study is employed to evaluate the 

performance of classifiers constructed using features at various levels within the GP scale-

space to a classifier constructed using all features across the scale space. This case study 

explores the identification and mapping of spotted knapweed in a grassland ecosystem 

using multispectral imagery acquired using a remotely piloted aircraft system (RPAS).  

Given the large number of features, feature optimization was critical for developing high-

performing classifiers. Classification was performed using two machine learning 

classifiers, random forest and support vector machine (SVM). The results of this case study 

show that very high-spatial resolution features do not produce the best image 

classifications, but rather that there is an optimal scale, lower than that of the raw 

imagery, of the image features that produces the best classification accuracy.  The results 

also show that classification is not improved by the inclusion of features at multiple spatial 

scales.  These findings suggest not only that feature spatial scale optimization can improve 

image analysis, but also that this optimization can inform RPAS flight planning to improve 

mission efficiency. 

 

Keywords: Remote sensing, Gaussian pyramid, Scale-Space Random forest, 

Support vector machine, Invasive plants, Centaurea stoebe, Remotely piloted aircraft 

systems (RPAS) 
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Introduction 

Invasive plants are non-native species that have become established in new 

environments, impacting the structure and function of the existing ecosystems and out-

competing native biotic communities (Pyšek and Richardson, 2010; Qian and Ricklefs, 

2006). The estimated economic loss caused by all types of invasive species has been at 

least $1.288 trillion (U.S. dollars) worldwide since 1970 (Diagne et al., 2021). One notable 

example in the grasslands and woodlands of western North America is Centaurea stoebe, 

or spotted knapweed. This species has become a significant management challenge as it 

has spread across millions of hectares, resulting in significant financial repercussions both 

from control measures and decreased forage yield (Singh et al., 2022). 

Land managers recognize the importance of intensive monitoring and early detection 

in effectively managing invasive species (Hobbs and Humphries, 1995). However, 

controlling invasions can be challenging due to the large size and complexity of invaded 

ecosystems (Holden, Nyrop, and Ellner, 2016). Early detection of invasive species has been 

shown to enhance the cost-effectiveness of treatment strategies (Malanson and Walsh, 

2013; Holden et al., 2016). For this reason, accurate and reliable methods for early 

detection of invasive species are vital. These methods often involve a combination of 

surveillance, monitoring, and rapid response systems. Advanced technologies, such as 

remote sensing (RS), DNA analysis, and predictive modeling, are increasingly being 

employed to improve early detection capabilities (Cassidy, 2020; Martinez et al., 2020). 

Preserving Grassland Ecosystems 

Detecting and mapping species invasions in grasslands is essential for managing 

these sensitive ecosystems. Grasslands, including both sown pasture and rangeland, 

comprise some of the largest ecosystems worldwide, representing approximately 20 to 40 

percent of the Earth's land area (Suttie et al., 2005). Natural grasslands are one of the 

most endangered ecosystems in North America (Samson and Knopf, 1994). Grasslands 

provide irreplaceable ecosystem services to people and the environment (O’Mara, 2012). 

However, human utilization of these grasslands can inadvertently promote the spread of 
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invasive plants, leading to the displacement of native species and a decline in land values, 

as well as ecological goods and services (Foster et al., 2020; Gaskin et al., 2021).  

 Remote Sensing Techniques for Mapping Invasive Plant Species 

Field-based visual inspections and plant species inventories are often used for 

mapping plant species invasions; however, these methods are time-consuming and 

impractical for large areas (Bradley, 2014). To address these limitations, the potential of 

RS technology, known for its ability to collect data over vast spatial extents, has been 

extensively explored for mapping species invasions (Bradley, 2014; Huang and Asner, 

2009; Joshi et al., 2004). Remote sensing techniques have shown promise in mapping 

invasive plants based on various plant characteristics such as seasonal phenology, 

biochemical, physiological, and structural characteristics, as well as the prevalence of 

invasive species in the study area (Gholizadeh et al., 2022). 

Many studies have investigated multispectral and hyperspectral imagery to identify 

invasive plants during flowering and fruiting when these plants exhibit a distinct spectral 

response from surrounding green plants (Andrew and Ustin, 2009; Huang and Geiger, 

2008; Ishii and Washitani, 2013). However, the success of these approaches depends not 

only on the distinct phenology of target invasive plants but also on access to RS data 

collected when the target plants are in a specific phenological stage, requiring either time-

targeted image acquisition or high-temporal resolution imagery throughout the growing 

season. High spatial resolution hyperspectral imagery has been used to detect invasive 

plants based on how their biochemical, physiological, and/or structural traits affect their 

spectral response (Glenn et al., 2005; Mitchell and Glenn, 2009; Yang and Everitt, 2010), 

due to the costs of acquiring high-resolution hyperspectral imagery, however, this 

approach is less common.  

The primary challenge in vegetation mapping using RS is precisely differentiating 

target plants from background vegetation. This challenge is even more pronounced in 

grasslands due to the small size and sparse canopy of vegetation (Malanson and Walsh, 

2013). Effective detection often necessitates that the invasive plants form patches 

reasonably uniform in nature and larger than the spatial resolution of the RS imagery (He 
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et al., 2015).  Such observations underscore the significance of image spatial resolution in 

the mapping process (Underwood et al., 2007).  

Satellite-acquired multispectral imagery offers spatial resolutions that range from tens 

of meters to meters. Several studies have explored the use of imagery acquired by the 

NASA/USGS Landsat-8 program (Khare et al., 2018; Matongera et al., 2017; Royimani et 

al., 2019) and the ESA Sentinel-2 constellation (Duncan et al., 2023; Gholizadeh et al., 

2022; Hawryło et al., 2018; Rupasinghe and Chow-Fraser, 2021) for mapping invasive 

species. However, with resolutions of 30 m and 10-20 m, respectively, imagery from these 

satellite programs are ill-suited for mapping invasive plants with small or sparse canopies, 

particularly in the early stages of invasion (Malanson and Walsh, 2013).  

For detecting small or fragmented patches of invasive species, researchers have 

explored the privately operated World View Satellite program and the ESA Planet Scope 

program acquire imagery.  Imagery from these systems have spatial resolutions of 1.84m 

and 3m, respectively (Lake et al., 2022; Shiferaw et al., 2019). However, even meter-scale 

imagery is too coarse to support the mapping of map invasives species with very small or 

very sparse canopies (Malanson and Walsh, 2013). 

 Enhancing Plant Species Invasion Monitoring with Remotely Piloted 

Aircraft Systems 

Recently, there has been increasing interest in using remotely piloted aircraft 

systems (RPASs) as an RS platform for monitoring and mapping plant species invasions 

(Dvořák et al., 2015; Hill et al., 2020; Lehmann et al., 2017; Mallmann et al., 2020). One 

of the key advantages of using RPAS is their ability to capture spectral images with 

unprecedented levels of spatial and spectral resolutions (Hill et al., 2020); this means that 

the acquired data can provide highly detailed and accurate measurements of the target 

vegetation. Another significant benefit of RPASs is the ease and flexibility in deploying 

these systems for imaging missions. Unlike traditional aerial or satellite platforms, RPASs 

can be quickly launched and maneuvered over specific areas of interest; this enables 

researchers and land managers to conduct imaging missions with high frequency, 
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increasing the temporal resolution of the collected data (Hill et al., 2020; Klosterman et 

al., 2018; Klosterman & Richardson, 2017). 

Access to high-resolution imagery provided by RPASs has revolutionized the field of 

invasive species monitoring and management. High resolution RPAS-acquired imagery 

allows for detecting and measuring target species within treatment areas with remarkable 

precision (Martin et al., 2018; Hill et al., 2017; Tamouridou et al., 2017). Researchers can 

identify and quantify the extent of invasive species presence, monitor their spread, and 

assess the effectiveness of control measures. This level of detail and accuracy is 

particularly valuable when dealing with very small or very sparse canopies, where 

satellite-based imagery may not be as effective (Gholizadeh et al., 2022; Malanson & 

Walsh, 2013).  

 Machine Learning Algorithms for Mapping Invasive Plants 

Machine learning algorithms (MLAs) have become a powerful tool in RS image 

analysis, due to their ability to model highly dimensional and non-linear data with complex 

interactions and overcome challenges associated with data gaps (Thessen, 2016). While 

many machine learning-based classification techniques exist, both parametric and non-

parametric, their applications extend beyond just RS classifications. For instance, these 

techniques have found utility in areas such as medical imaging (Erickson et al., 2017), 

financial forecasting (Kamalov et al., 2021), and text classification (Ikonomakis et al., 

2005). Within the realm of RS, they play a pivotal role in tasks like land cover mapping 

(Petropoulos et al., 2012), vegetation health monitoring (Hawryło et al., 2018; Selvaraj et 

al., 2020), and urban development tracking (Shafizadeh-Moghadam et al., 2017). Machine 

learning algorithms can effectively learn and model these complex patterns, enabling the 

identification and classification of invasive plants with improved accuracy and precision 

compared to traditional manual methods or basic automated processes (Mountrakis et 

al., 2011). Furthermore, the integration of ancillary data, such as environmental variables 

or topographic features, can further enhance the classification performance (Ng et al., 

2016; Nininahazwe et al., 2023). 
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 Objectives 

In the southern interior of British Columbia, the invasive spotted knapweed 

(Centaurea stoebe) is not only a growing concern but has also been categorized under the 

Regional Containment/Control priority categories established by Provincial Priority 

Invasive Species BC (Inter-Ministry Invasive Species Working Group March 2021). Recently 

Baron and Hill (2020) developed a method, called metapixel-based image classification, 

for mapping spotted knapweed in a grassland ecosystem using RPAS-acquired 

multispectral imagery. The metapixel-based classification segments the study area into 

non-overlapping squares larger than the image resolution, termed metapixels, to derive 

spectral features from the image pixels within each metapixel. Baron and Hill (2020) used 

a metapixel size of 1m2, corresponding to the size of quadrats commonly used by range 

managers, to determine the relative abundance of target species. Their study showed that 

by applying this method and using second-order spatial statistics derived from the grey 

level co-occurrence matrix (GLCM) of the metapixels (Haralick et al., 1973), the relative 

abundance of spotted knapweed in each metapixel could be determined with an overall 

accuracy of 66.0% when validated with an independent dataset (Baron and Hill, 2020).  

This study aims to expand on the previous work by exploring the impact of image 

spatial resolution on mapping spotted knapweed in a grassland ecosystem. Due to weight 

limitations, RPAS-based RS often employs less accurate sensors than satellite or 

conventional aircraft-based RS (Hill et al., 2019). Increasing the area corresponding to a 

pixel, called the ground-resolved distance, in an image increases the amount of spatial 

averaging in determining the measurement associated with that pixel. While this 

averaging can enhance the image smoothness by reducing high-frequency details, it also 

amplifies the within-pixel variability of the captured spectral data, leading to image 

blurring. Building on these insights, I hypothesize that there exists an optimal spatial 

resolution for spectral features used in classifying spotted knapweed within multispectral 

imagery. It's crucial to note that when referring to "features," the emphasis is on the 

descriptive attributes of the metapixel, rather than physical elements present within the 

image scene, such as trees or grass. 
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 To investigate these hypotheses, this study is driven by two primary objectives: 

1) Determine if there is a relationship between spatial resolution and image 

classification accuracy that can help identify an optimal spatial resolution for 

mapping spotted knapweed using multispectral imagery. 

2) Determine if the image features at multiple spatial resolutions improve or hinder 

the identification of spotted knapweed using multispectral imagery. 

 Study Site 

The data that will be used in this work was collected within the Laurie Guichon 

Memorial Grasslands Interpretive Site (LGMGIS), which is located south of Merritt, British 

Columbia (BC), Canada. This 100-hectare site is situated in Canada's Western Cordillera 

physiographic region and is classified as representing BC’s Interior Douglas Fir dry hot 

ecosystem subzone. In a previous study conducted by Baron and Hill (2020), three field 

sites were selected within the LGMGIS. Each field site covered an approximate area of 1 

hectare and exhibited a gentle slope with a southern aspect. Figure 1 shows the locations 

of these three field sites within the LGMGIS. 

 

Figure 1: Locations of the 3 field sites in Laurie Guichon Memorial Grasslands Interpretive Site 

(LGMGIS) explored in this study.  This map uses the WGS 84 UTM Zone 10N coordinate system. 
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 Data Acquisition and Image Processing 

The data used in this research was collected by Jackson Baron as part of his thesis 

work (Baron, 2019). These data were collected using a Parrot Sequoia multispectral 

sensor, featuring a 16-megapixel digital camera and four 1.2-megapixel global shutter 

single-band imagers, accompanied by an incident light sensor and GPS. The sensor was 

securely mounted on a DJI Phantom 4 RPAS for aerial data acquisition.  Imaging flights 

were carried out between 11:00 a.m. and 1:00 p.m. July 04, July 12, and July 19, 2018. On 

July 04, imagery was acquired at all 3 field sites.  However, due to technical difficulties 

with the Phantom 4 RPAS, data was not acquired from Site 1 on July 12 or from Site 3 on 

July 19. 

The Parrot Sequoia sensor, which features a 16-megapixel camera and an in-built 

GPS, was the primary tool. The sensitivities of this sensor's single-band imagers are 

detailed in Table 1. For optimal results considering both safety and resolution, a flight 

altitude of 30m was maintained. All conducted flights were in compliance with the 2018 

Canadian Aviation Regulations. More specifics on the flight parameters can be found in 

Table 2.  

 

Table 1: Band number, band names, central wavelength, and full width at half maximum (FWHM) of 

Parrot Sequoia sensor. 

Band Number Nominal Reflectance Centered Wavelength FWHM (nm) 

1 Green 550 40 

2 Red 660 40 

3 Red Edge 735 10 

4 NIR 790 40 

 

 



 16 

Table 2: Parameters adopted during flight data collection. 

Height Above 

Ground Level(m) 

Forward Overlap 

(%) 

Side Overlap 

(%) 
Time of Day 

Max Wind 

Speed (km/h) 

30 80 80 
11:00a.m. - 

1:00p.m. 
40 

Every scene captured by the Sequoia's single-band imagers assigns a digital 

number (DN) to each pixel. These DNs are linked to the radiance (measured in Wm-2 sr-1) 

reflected from the land surface over the pixel area. This relationship can be expressed 

through an equation provided by Parrot (2017). 

𝐿 =  𝑓2  
𝐷𝑁−𝐵

𝐴𝜀𝛾+𝐶
                                                                                                              (1) 

Where 𝑫𝑵 represents the digital value assigned to each pixel. The exposure time 

of the image, given in seconds, is denoted by 𝜺. The ISO is represented by 𝜸. The f-number 

of the imager, symbolized by 𝒇, is set at 2.2, and it provides the relationship between the 

focal length and the aperture diameter of the lens. Calibration coefficients are denoted by 

𝑨, 𝑩, and 𝑪. These specific values are stored within the exchangeable image file (EXIF) 

metadata during the image capture process. 

Additionally, during image capture by the single-band imagers, the Sequoia 

sensor’s incident light sensor records a radiance level, denoted as  𝚿. This radiance is 

associated with the irradiance,  𝑬 (measured in Wm-2 sr-1) that the land surface receives 

over the area represented by a pixel. This relationship is defined according to a specific 

equation, as cited from Tu et al. (2018). 

𝐸 = 𝑎 
Ψ

𝐺Γ
                                                                                                                     (2) 

Where 𝑬 is the irradiance on the land surface, 𝑎 represents a constant, 𝚿 denotes 

the radiance detected by the sensor. Additionally, 𝐆 signifies the sensor's gain, and 𝚪 

stands for the time taken for measurement acquisition. The data values for 𝚿, 𝐆, and 𝚪 

are documented in the image's EXIF metadata when the image is captured. 
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The surface reflectance, represented as 𝝆, is determined in the post-processing 

stage of the images taken from the single-band imagers, and this is based on a specific 

formula provided by Tu et al. (2018). 

𝜌 = 𝐾
𝐿

𝐸
                                                                                                                       (3) 

Where 𝑳 is computed using Equation 1, 𝑬 is computed using Equation 2, and 𝚱 is 

a normalization constant related to the ratio of the solid angles from the incident light 

sensor to that of each pixel within the imager. 

For each flight, the normalization constant 𝚱 is approximated using data from a 

ground-based, calibrated reflectance target. A Parrot Sequoia Calibration Target (Parrot, 

Paris, France) with known reflectance values (green: 18.4%, red: 19.7%, red edge: 22.7%, 

NIR: 27.6%) was positioned near the take-off and landing sites, and images of this target 

were captured at the beginning and end of each flight. During the processing phase, the 

Pix4Dmapper photogrammetry and RPAS mapping software, an implementation of the 

structure-from motion (SfM) algorithm (Turner et al., 2012) identified the calibration 

target in the imagery, assisting in the estimation of the normalization constant. Given the 

known reflectance of the calibration target, equations 1, 2, and 3 assist in estimating the 

normalization constant (𝚱) from the image pixels linked to the calibration target. 

The RPAS images were processed and combined using the Pix4Dmapper software, 

which applies the structure-from-motion algorithm. The orthomosaicked images 

produced by Pix4D are georeferenced using coordinates from the global navigation 

satellite system (GNSS) embedded in the Sequoia sensor. However, this georeferencing 

can be regarded as a preliminary or 1st order approximation, as the GNSS positioning 

system can have errors, potentially up to 10 meters. To enhance accuracy, 6 Ground 

Control Points (GCPs) per site were employed. This processing created orthomosaicks 

from the four calibrated single-band sensors including Green, Red, Near Infrared (NIR), 

and Red-Edge with a ground-resolved distance of 2.9cm. 

For field surveys, specific locations were located on the orthomosaicks to extract sub-

images. These locations were identified visually and manually digitized based on markers. 

The GPS's 60cm accuracy meant visual marker identification was more reliable. Each sub-
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image, equivalent to a 1m2 metapixel, represented an area surveyed in the field, 

containing 1156 pixels (34 rows by 34 columns).  

Given the variability in spotted knapweed density across the surveyed quadrats 

and the relatively small number of quadrats surveyed, percent cover of spotted knapweed 

within each quadrat was categorized into qualitative classes. Quadrats in which spotted 

knapweed was not present or only present in trace were classified as “None”, quadrats in 

which spotted knapweed did not exceed 25% cover were classified as “Moderate”, and 

quadrats in which spotted knapweed exceeded 25% cover were classified as “High”. This 

categorization was essential for effectively training a classifier because it increased the 

number of examples representing each class of spotted knapweed cover. The classification 

was based on ensuring a balance between showing distribution and accounting for less-

represented spotted knapweed concentrations. The complete dataset consists of 181 

measured quadrats, 51 classifieds as None, 63 classifieds as Moderate, and 67 classifieds 

as High. 

Subsequently, a comprehensive set of 84 features was extracted for each 

metapixel. This includes: 

• Eight features that captured both the mean and standard deviation of reflectance 

values at the pixel level for every spectral band.  

• Six features derived from the calculation of the mean and standard deviation for 

three multiband spectral indices for each pixel within the metapixel.  

• The remaining 70 features were obtained through GLCM-based texture analysis, 

yielding valuable texture features for each of the five spectral bands and three 

multiband indices. 

For each pixel within the metapixels, three multiband spectral indices were computed. 

These were derived from the normalized difference vegetation index (NDVI) and 

calculated by contrasting Near Infrared (NIR) with the remaining spectral reflectance 

bands. Indices computed using the reflectance values from the red and NIR bands are 

designated as NDVI (Carlson and Ripley, 1997). Those comparing the green and NIR band 

reflectance values are denoted as gNDVI. Lastly, indices comparing the red-edge and NIR 
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band reflectance values are labeled as reNDVI. Each index was computed as follows (Baron 

and Hill, 2020): 

 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −𝜌𝑅

𝜌𝑁𝐼𝑅 +𝜌𝑅
                                                                                                              (4) 

 

𝑔𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −𝜌𝐺

𝜌𝑁𝐼𝑅 +𝜌𝐺
                                                                                                              (5) 

 

𝑟𝑒𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −𝜌𝑅𝐸

𝜌𝑁𝐼𝑅 +𝜌𝑅𝐸
                                                                                                              (6) 

 

Where 𝜌𝐺 , 𝜌𝑅 , 𝜌𝑅𝐸 , and 𝜌𝑁𝐼𝑅  represent the reflectance values of the green, 

red, red-edge, and NIR spectral bands, respectively. 

 Roadmap of the Thesis 

In conclusion, Chapter 1 provides an overview of the research problem, the motivation 

behind the study, and the objectives set to be achieved. Key concepts and theories that 

form the foundation of the research as well as an orientation to the dataset explored in 

this work are also introduced. Following chapters will explore the methodologies 

employed in the study, followed by the presentation of the results obtained. 

Chapter 2 - Methodology and Experimental Setup: This chapter delves into the 

research techniques utilized to meet the objectives of this work. 

Chapter 3 -  Results and Discussion: This chapter reports and analyses the research 

outcomes. It covers the discoveries obtained from employing the methods mentioned in 

Chapter 2 on the chosen dataset. A thorough analysis of the results is presented, bolstered 

by visuals and performance metrics. The chapter also integrates these findings and their 

contribution into the existing body of knowledge regarding RS-based invasive species 

mapping. 

Chapter 4 - Recommendations and Future Work: This chapter will encapsulate the 

recommendations stemming from the research's key findings. It will shed light on 
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actionable suggestions that can be implemented to address current challenges and gaps 

identified. Moreover, a forward-looking perspective will be provided, discussing potential 

areas of further research and exploration.



 

 

 

 

Chapter 2 

Method
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Introduction 

This chapter describes the methodologies employed in this work to map invasive 

species.  

Previous work on mapping invasive plants has shown substantial advancements in 

detection through the use of innovative methodologies for analyzing remote sensing 

imagery. Baron and Hill (2020) and Kattenborn et al. (2019) both employed RPAS-acquired 

imagery for assessing woody invasive species in grasslands and forests, respectively. They 

emphasized the importance of texture analysis in achieving accurate predictions. On the 

other hand, Michez et al. (2016), Dorigo et al. (2012), and Du et al. (2021) utilized various 

remote sensing methods for detecting invasive plants, showcasing the effectiveness of 

integrating spectral, spatial, temporal characteristics, and gray level co-occurrence matrix 

(GLCM) texture measures. Du et al. (2021) further highlighted the superiority of object-

based analysis over pixel-based methods in classifying wetland plant communities.  

Recently, for image classification improvement, multi-scale analyses utilizing a 

Gaussian pyramid (GP) model have been explored to create features at progressively 

larger spatial scales. In these analyses, a GP model is applied to create features at 

increasingly larger scales. This approach marks a novel development in the context of 

invasive species analysis.  

Several studies have explored the use of GP and GLCM separately for feature 

extraction and classification. These methods have proven to enhance classification 

accuracy and are particularly useful in multi-resolution spatial analyses. In the studies by 

Behrens et al. (2018) and Yin and Cui (2021), GP played a pivotal role. Behrens et al. (2018) 

utilized lower spatial resolution levels of GP to effectively extract terrain attributes from a 

digital elevation model (DEM), enabling analysis at various scales. Yin and Cui (2021) 

developed a multi-scale feature extraction and classification approach for hyperspectral 

images, integrating GP with weighted voting. By breaking down hyperspectral images into 

multiple scales with GP and applying weighted coefficients based on spectral angle 

distance, they significantly improved classification accuracy, underscoring the efficacy of 

multi-scale analysis. 
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Furthermore, the combination of GLCM-based texture measures with GP-based multi-

scale feature creation has shown to significantly improve image classification in several 

fields, including biomedical imaging, as evidenced by Liu et al. (2022) and Ataky et 

al.(2023), and other image datasets as noted by Roberti de Siqueira et al. (2013). However, 

the incorporation of GLCMs and GP for feature creation remains unexplored in remote 

sensing image analysis. In summary, these studies demonstrate the robust versatility of 

the GP and GLCM in extracting features and performing classification across various 

domains and image processing applications. 

The subsequent sections of this chapter delve into the application of machine learning 

(ML), specifically focusing on the two methods that will be used in this work: random 

forests (RFs) and support vector machines (SVMs). These ML methods will use to develop 

models that will predict the amount of spotted knapweed cover based on multiscale 

GLCM features derived using the GP. The following section will provide an overview of 

machine learning, followed by an introduction to the RF and SVM models that will be 

employed. Additionally, we will discuss feature creation using GLCMs and GPs, feature 

selection, hyperparameter tuning, and other pertinent aspects of RF and SVM model 

building. 

Machine Learning: an Overview 

In the realm of remote sensing imagery, ML has surged to the forefront as an 

indispensable tool, propelled by the exponential growth of big data technologies and high-

performance computing capabilities. These advancements have enabled ML to become a 

critical asset in deciphering complex, data-rich environmental operations. 

As Liakos et al. (2018) highlight, a fundamental attribute of ML is its capacity to 

enable machines to autonomously learn to replicate patterns present in input data, thus 

circumventing the limitations imposed by traditional programming. This autonomous 

learning is accomplished by constructing computational models that encapsulate the 

intricacies of real-world phenomena through the formulation of input-output 

relationships derived from extensive datasets. Such ML models are particularly skilled at 

constructing equations to depict these relationships, adeptly handling their potential 
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nonlinearity and discontinuity. This allows them to uncover intricate patterns that are 

often too complex for closed-form mathematical equations to represent accurately and 

may remain undetected by traditional non-ML empirical modeling methods, such as 

regression analysis. 

ML methods can be categorized into broad groups, distinguished by the nature of 

the learning involved—be it supervised or unsupervised—as well as by the models and 

specific methodologies employed, such as classification, regression, clustering, and 

dimensionality reduction (Alpaydin, 2020).  Supervised learning requires a set of examples 

that demonstrate the input-output pattern to be modeled, whereas unsupervised 

learning infers the output based on the input data alone. Each example is characterized 

by a set of features serving as predictors for the desired output. If a supervised learning 

method is used, the set of outputs (e.g., a class label) corresponding to each example is 

also provided. Utilizing statistical optimization, the parameters of the ML model are 

refined to enhance performance in solving the particular problem at hand. This iterative 

optimization and learning phase, known as "training," utilizes a designated set of 

examples and outputs (for supervised learning only) called "training data" to guide the 

model development. Once trained, an ML model can not only be used to predict outcomes 

for new, unseen examples, but also to facilitates a deeper understanding of the underlying 

data relationships through the examination of its parameters (Alpaydin, 2020; Baştanlar 

and Özuysal, 2014). This work will employ two supervised classification methods, namely 

random forest (RF) and support vector machine (SVM). 

In addition to the training data, another critical input for ML models is their 

hyperparameters, which dictate the model's structure and the nuances of its training 

protocol. These hyperparameters, which are set prior to training, are crucial as they 

directly affect the model's learning proficiency, effectiveness, and operational efficiency. 

The efficacy of an ML model depends on various determinants, including the abundance 

and integrity of the training data, the intricacy of the connections between input and 

output variables, and practical constraints such as the time and memory resources 

available for training (Baştanlar and Özuysal, 2014). In this context, the selection and 
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optimization of hyperparameters are paramount, as they play a pivotal role in harmonizing 

the model's architecture with the complexity of the task to ensure optimal performance. 

The performance of a machine learning model in a specific task is quantified by 

evaluating the model using a set of examples and associated outputs known as the 

validation data. These data are held out from the training process and, thus, can 

demonstrate if the learned model will generalize to new cases. Several performance 

metrics have been proposed, and this work will use four popular metrics, namely, 

accuracy, precision, recall, and the F1 score (Murphy, 2012). 

▪ Accuracy: This is the ratio of correct predictions to the total number of predictions. It 

measures the overall correctness of the model. 

▪ Precision is the ratio of correctly predicted positive observations to the total predicted 

positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                 (7)            

where: TP is the number of true positives. FP is the number of false positives.   

▪ Recall (or Sensitivity or True Positive Rate) is the ratio of correctly predicted positive 

observations to all actual positives.     

    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                 (8)            

where: TP is the number of true positives. FN is the number of false negatives. 

▪ F1 Score is the is the harmonic mean of precision and recall. It tries to find the balance 

between precision and recall. 

    𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                    (9)       

▪ Macro Average averages the precision, recall, and F1-score for each class 

independently, treating every class with equal importance. It gives a sense of the 

model's overall performance across all classes without taking their distribution into 

account. 

▪ Weighted Average takes the class distribution into account by assigning a weight to 

each class's performance metrics (such as precision and recall) based on how 

frequently each class appears in the dataset. This metric can offer a more nuanced 



 26 

view of model performance when the test set mirrors the real-world distribution of 

classes. Nevertheless, in cases of significant class imbalance, it may over-represent 

the model's efficacy on the more dominant classes, potentially overestimating the 

overall performance if the model is better at predicting the majority classes than the 

minority ones. 

▪ Support refers to the number of instances of each class in the dataset, which can 

directly impact the weighted average and is an important factor to consider when 

assessing model performance. 

These metrics are used together because they reveal different aspects of the 

model performance, especially in scenarios with imbalanced class distributions, as mere 

accuracy can be misleading in these situations (Murphy, 2012). 

Data Partitioning: Training and Validation Data 

Predictive modeling using ML often involves tuning parameters and possibly 

feature selection to allow accurate replication of the input/output pattern. To determine 

optimal parameter settings and relevant features, it is vital to use existing data. In machine 

learning, the comprehensive data set is typically divided into training and validation 

subsets. The training set aids in model construction, tuning, and feature selection, while 

the validation set assesses predictive performance (Kuhn and Johnson, 2013).   

The model's performance is influenced by the distribution of output variables in 

both training and validation sets. An unbalanced training set, where output variables 

aren't distributed uniformly, can lead to a model bias. This bias makes the model proficient 

at predicting dominant outputs but weak at predicting less frequent outputs. Similarly, an 

unbalanced validation set can skew performance measures, emphasizing the dominant 

outputs' prediction accuracy. For classification models with discrete output variables, 

stratified random sampling, as opposed to simple random sampling, is advised for 

partitioning data to training and validation sets (Kuhn and Johnson, 2013). When aiming 

for balanced training and validation sets, the least represented class often determines the 

size of the training data set. To ensure diversity in more frequent classes, resampling or 

bootstrapping is common, generating multiple training and validation set versions. This 
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technique has been proven to enhance model performance (Kuhn and Johnson, 2013) and 

will be used in this work. 

Cross Validation 

Cross-validation is a strategy to systematically partition a training set. This division 

allows a segment of the data to be utilized for model training while the remainder assesses 

the model’s performance, guiding its training by adjusting hyperparameters or halting it if 

ineffective (Fushiki, 2011). This iterative process ensures all training set examples 

contribute to both training and model assessment. Beyond mitigating overfitting, cross-

validation-derived performance metrics tend to be more reliable than those computed 

without this procedure (Wong and Yeh, 2020). 

K-Fold Cross Validation 

K-fold cross-validation divides the training set into 'k' equally sized subsets, or 

folds. Membership in these subsets is determined through random selection. The model 

is initially trained using all folds except the first, subsequently predicting the outcomes for 

the excluded fold to evaluate performance. This cycle repeats, with each fold being 

excluded once. The outcome is 'k' distinct performance estimates, typically presented as 

mean and standard error values. This aggregated data provides insights into the influence 

of model hyperparameters (Kuhn and Johnson, 2013). The cross-validation process with 

k= 3 is depicted in Figure 2. 
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Figure 2: A diagram demonstrating threefold cross-validation. Symbols represent training set 

samples, divided into three groups. Sequentially, each group is excluded during model training. 

Performance estimates, such as error rate, are derived for each withheld sample set. Averaging these 

performance metrics gives the cross-validation estimate of model performance. 

 

The decision of the number of folds (k) to use in cross-validation is crucial. While 

5 or 10 are standard choices, there's no universal standard. A larger number of folds 

means the training model uses a sample size nearing the complete training set. For 

example, when k equals the total training set size (N) - termed "leave-one-out" cross-

validation - the model trains on N-1 samples. One sample is reserved in each training cycle 

for performance estimation. This approach reduces bias, where "bias" is the difference 

between estimated and true performance values. Thus, a larger k value, like 10, tends to 

display less bias than a smaller 'k' value, such as 5 (Fushiki, 2011). 

In this study, we applied a dual-validation approach to the machine learning model. 

Initially, a 10-fold cross-validation on the training dataset was used to optimize the model 

parameters and ensure its robustness. Each fold cyclically trained and tested the model, 

facilitating parameter refinement. Subsequently, once the model was developed, an 

independent validation set, separate from the training data set, was used to evaluate the 

model's capability to generalize and make accurate predictions in unfamiliar scenarios. 
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Recursive Feature Elimination (RFE) 

Feature Selection involves sequentially assessing each feature in a dataset to 

identify their effectiveness on the outcome. The goal is to achieve the same or higher 

accuracy while reducing the dimensionality of data with many features. The Recursive 

Feature Elimination (RFE) technique evaluates the classifier's performance by 

systematically removing features.  Features that can be removed without resulting in a 

significant decrease in model performance are considered to be expendable, while 

features that cannot be removed without resulting in a significant performance decrease 

are considered to represent the optimal feature set.  RFE begins by considering the full set 

of features, and then calculates the model's performance. It also assesses the significance 

or ranking of each feature within the classifier. Through iterative cycles, subsets are 

generated by progressively eliminating features. In each iteration, the classifier is 

retrained, its performance reassessed, and the importance or rankings of the remaining 

features are recalculated (Svetnik et al., 2004; Ustebay et al., 2018).  

Various techniques are often utilized for evaluating the model performance during 

RFE, including Recursive Feature Elimination with Cross-Validation (RFECV) (Misra and 

Yadav, 2020), Principal Component Analysis (PCA) (Wibawa and Novianti, 2017), and 

measures like Information Gain Ratio and Information Gain (IG) (Adi et al., 2019). In RFECV 

the training data are divided into folds, and RFE is performed on each fold.  The cross-

validation scores of the resulting classifiers are averaged, and the number of features 

selected for the fold that produces the best score is determined to be the optimal number 

(Nopt) of features.  Finally, RFE is performed using the entire training dataset to identify the 

optimal set of Nopt features. Misra and Yadav (2020) have shown that the RFECV method 

can enhance the performance of classification algorithms. Additionally, Chang et al. (2019) 

has demonstrated that employing the RFECV algorithm with 10-fold cross-validation 

significantly improves the precision of algorithms such as RF and Extreme Gradient 

Boosting (XGBoost), even with a reduced attribute set. 

For this study, a two-step recursive feature elimination process was developed using 

the RFE and RFECV methods in the open-source Python library, SciKit Learn. The first step 
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RFECV was employed construct feature sets of all sizes from 1 to N features, where N is 

the maximum number of features available. For each feature set size, the cross-validation 

score was calculated. This process was repeated to account for stochasticity in the fold-

selection and the training process, and the average cross-validation score was calculated. 

A plot of the average cross-validation score versus the size of the feature set was plotted, 

and a visual analysis was conducted to identify the optimal feature set size (Nopt). The 

feature set size that corresponded to the highest average cross-validation score is selected 

unless, there are ties. In the case of ties for the highest average cross-validation score, the 

principle of parsimony was applied, and the smallest feature set size of all of ties was 

selected.  In the second step, REFCV was repeated this time to select which Nopt features 

to include in the optimal feature set.  This selection process was repeated to address 

stochasticity in the fold selection and model training.  Finally, the optimal feature set was 

defined to be the Nopt features that were selected by the majority of these repeated REFCV 

runs. 

Random forest  

This section delves into the RF algorithm, highlighting the core mechanisms behind 

the construction of its ensemble of trees. The nuances governing the tree-building process 

are explored, alongside the essential aspect of hyperparameter tuning in optimizing the 

RF model's performance. The RF, a supervised machine learning model, is implemented 

in this study using the open-source Python library, SciKit Learn. An RF comprises an 

ensemble of decision trees (Breiman, 2001; Mingers, 1989). Decision trees use a 

hierarchically partition a data from the root node down to the leaf nodes as depicted in 

Figure 3.  
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Figure 3: Decision tree structure showcasing root nodes, decision nodes, leaf nodes, and branches. 

Decision trees are differentiated into classification trees, which are designed for 

qualitative response variables, and regression trees, tailored for quantitative response 

variables (Strobl et al., 2009). A known characteristic of decision trees is their sensitivity 

to the training data; even minor changes in the data can significantly alter the tree's 

structure, potentially leading to poor generalization in the resulting classifier 

(Sheykhmousa et al., 2020). To enhance generalization, the predictions from multiple 

trees can be aggregated in an ensemble method. The RF algorithm adopts this strategy by 

fitting numerous individual trees, often hundreds or thousands, and integrating their 

predictions to produce a final outcome (Elith, 2019; Pal, 2005; Strobl et al., 2009). The 

model user must define the number of trees, a hyperparameter, which contributes to 

mitigating the over-specificity of single trees and leads to more reliable predictions (Hastie 

et al., 2009).  

In RF, each tree is constructed from a bootstrap sample of the training data, drawn 

with replacement, equal in size to the training dataset. On average, these samples contain 

about 63.2% unique records, the so-called in-bag samples, while the remaining unchosen 

records, the out-of-bag samples, help estimate the model's error rate (Efron and 

Tibshirani, 1994). RF differentiates itself from other ensemble methods such as bagging 
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by introducing randomness in the selection of predictors at each split, evaluating only a 

subset of predictors to find the optimal one. This strategy generates decorrelated trees 

and reduces overfitting risks (Breiman, 2001; Elith, 2019; Strobl et al., 2009).   

RF typically constructs "deep" trees, unpruned with many splits, which may lead to 

terminal nodes that have few data points. The minimum sample size for terminal nodes 

and the tree depth are adjustable through hyperparameters, which vary in their specific 

control features according to the software implementation (Elith, 2019; Strobl et al., 2009; 

Valavi et al., 2021). 

Once trained, the RF model applies its collective knowledge to new, unlabeled input 

data. Each decision tree in the ensemble contributes a vote towards a class membership 

for each data point. The class that garners the majority of votes is assigned as the 

prediction for the given input (Breiman, 2001; Klusowski, 2018). 

Optimizing RF performance: Hyperparameters Tuning 

The RF is a flexible and potent algorithm but demands careful calibration of various 

hyperparameters to deliver optimal performance. The appropriate choice of 

hyperparameters can significantly affect the accuracy, generalizability, and efficiency of 

the RF model. These include the number of observations selected at random for each tree 

and whether they are drawn with or without replacement, the count of variables chosen 

randomly for each split, the criterion for splitting, the minimum required samples within 

a node, and the total number of trees in the ensemble (Probst et al., 2019). 

A significant part of executing the RF model is the configuration of its two primary 

hyperparameters: the number of trees (Ntree), and the number of randomly selected 

features to be considered at each split (Mtry). The number of trees in a RF impacts the 

model’s ability to represent patterns characterized by a large number of training data or a 

large number of features in each training example.  As the training set size or number of 

features increases, so too should the number of trees in the RF. Each tree in the RF has 

the potential to use any of the predictive features for classifying an example.  However, 

each split in the tree will be selected using a unique subset of these predictors. The size 

of this subset is defined Mtry parameter. Berhane et al. (2018) pointed out, while the RF 
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model's behavior is generally resilient to changes in Ntree, it can be more sensitive to 

variations in Mtry. Reducing the Mtry parameter can lead to quicker training, but it also 

diminishes both the correlation between any two trees and the individual strength of each 

tree in the forest. Consequently, the value of this hyperparamter has a multifaceted 

impact on classification accuracy (Klusowski, 2018).  

Given that the RF classifier is computationally efficient and tends not to overfit, it can 

accommodate a very large number of trees (Ntree) (Guan et al., 2013). However, 

numerous studies have identified 500 as an optimal number for Ntree, as further increases 

did not yield improvements in accuracy (Belgiu and Drăguţ, 2016). In contrast, the ideal 

value for Mtry depends on the specific dataset. For classification tasks, it is advised to set 

the Mtry parameter to the square root of the number of input features (Breiman, 2001).  

This study uses the RF implementation in the Python’s scikit-learn library for Python.  

In this RF implementation, the hyperparameters Mtry and Ntree are named max_features 

and n_estimators, respectively.  The complete set of hyperparameters in the scikit-learn 

RF implementation are: 

• Max_depth: Each tree's depth in the forest determines its complexity. By setting 

an explicit max depth, we can prevent the tree from growing endlessly. An overly 

deep tree might lead to overfitting; conversely, a shallow tree might underfit the 

data. 

• Min_samples_split: This refers to the minimum count of data points placed in a 

node before the node is split. For instance, if the value is set to 10, a split will be 

attempted only if it contains at least 10 data points. 

• Min_samples_leaf: After a successful split, nodes might contain a small count of 

data. If this count is lesser than 'min_samples_leaf,' then the split will be deemed 

unsuccessful. This is a regularization hyperparameter that helps in avoiding overly 

specific leaves in the tree. 

• Bootstrap: A core concept in the RF model, bootstrapping involves training each 

tree on a distinct subset of data. This subset, known as the "bag," is sampled with 

replacement from the entire dataset. The data points not in the bag are called 
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"Out of Bag (OOB) samples." Aggregating the outputs from multiple such 

diversified trees helps in reducing the model's variance and increases its 

robustness (Kelkar and Bakal, 2020). 

These hyperparameters are critical to RF modeling and will be tuned to find the 

optimal set of hyperparameters for a given dataset (Probst et al., 2019). 

Support Vector Machine (SVM) 

First proposed by Vapnik and his team in the late 1970s, the SVM, a supervised non-

parametric statistical learning technique, has become one of the most prevalent kernel-

based learning methods in diverse machine learning tasks, notably in image classification 

(Vapnik, 2006). Fundamentally SVM is a linear binary classifier that delineates a singular 

boundary between two categories. This linear SVM presupposes that the multi-faceted 

data can be linearly divided in the input domain (as illustrated in Fig. 2-3). Specifically, 

SVMs determine an optimal hyperplane (i.e., a surface in the dimensional space defined 

by the input variables) to divide the dataset into specific pre-established classes, based on 

training data. To ensure the largest separation or margin, SVMs utilize a subset of the 

training data that is nearest in the feature space to the best optimal boundary, known as 

the support vectors (Foody and Mathur, 2004).  

The optimal boundary, often termed the "maximal margin" or "optimal 

hyperplane," is a key aspect of SVM. It represents a decision-making border designed to 

minimize errors when categorizing data during the training phase (Mountrakis et al., 

2011). Referring to Figure 4, multiple hyperplanes are chosen such that no data samples 

lie between them. The best hyperplane is identified by maximizing the separation distance 

between these hyperplanes. This systematic approach is termed the learning process. 
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In real-world scenarios, data points from different classes may not always be cleanly 

separated, leading to overlaps, as depicted in Figure 5. Recognizing these challenges, 

Cortes and Vapnik (1995) introduced significant enhancements to SVM, notably the soft 

margin and the kernel trick. The soft margin method introduces slack variables to the SVM 

optimization process, allowing some linear data separation. Concurrently, the kernel trick 

aims to transform the original data into a higher-dimensional space, making previously 

overlapping samples more distinct, as shown in Figure 6. The efficacy of SVM largely 

depends on the right choice of kernel function. Commonly used kernel functions include 

the Sigmoid, Radial basis function, Polynomial, and Linear models (Cherkassky and Ma, 

2004). Specifically, the polynomial and radial basis function (RBF) kernels are frequently 

used in analyzing remotely sensed images (Mountrakis et al., 2011).  

Figure 4: Illustration of an SVM classifier with a linear kernel applied to linearly separable data, 

highlighting the optimal separating hyperplane (solid line) and the margins (dashed lines) defined by 

the support vectors (circled points). 

Support vectors 

Support vectors 
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Figure 6:Illustration of the kernel trick applied to data in a 3D space, demonstrating the 

transformation that facilitates the separation of classes which are not linearly separable in the 

original dimensions. 

 

Figure 5: Visualization of a non-linear SVM classification, showing how a non-linear boundary 

effectively separates two distinct classes in the feature space. 
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Optimizing SVM Performance: Hyperparameters Tuning 

Parameters, including the kernel's parameters C, 𝛾, the degree, and the kernel 

function itself, require meticulous optimization. 

• C (Cost parameter): 

C is a regularization parameter in SVM. It determines the trade-off between 

achieving a low error on the training data and maintaining a wide margin between classes. 

A small value of C creates a wider margin, which may result in more training errors. A large 

value of C aims for a smaller margin and fewer training errors. However, setting C too high 

might make the model overfit to the training data, reducing its ability to generalize to 

unseen data. 

• 𝜸 (Gamma):  

𝛾 is a parameter specific to the Radial Basis Function (RBF) kernel. It determines 

how far the influence of a single training sample reaches, implying how closely the model 

will fit to the training data. A low 𝛾 value makes the model more flexible by considering a 

broader range of influence for each training sample, producing a more generalized 

solution. A high 𝛾 value considers only close points, producing a more fitted solution, but 

with a risk of overfitting. 

• Degree: 

This parameter is specific to the polynomial kernel in SVM. It sets the degree of the 

polynomial function used, altering the complexity of the decision boundary. A higher 

degree polynomial can capture more complex relationships in the data but increases the 

risk of overfitting if the complexity is not warranted by the data structure. 

These hyperparameters are pivotal in defining the decision boundaries of SVM 

classifiers and are essential in the model's capacity for generalization. The careful tuning 

and in-depth understanding of these parameters are critical, as they have a profound 

effect on the SVM's performance with both training and unseen datasets. This research 

incorporates the aforementioned hyperparameters for model tuning, with detailed values 

and results to be presented in Chapter 3. 
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Optimizing Machine Learning Performance: Grid Search 

To ensure the highest performance of our machine learning models, it is crucial to find 

the right combination of hyperparameters. In this work uses a grid search method, as 

detailed by Ataei and Osanloo (2004) and Probst et al. (2019). Hyperparameter tuning via 

grid search is an exhaustive method that systematically evaluates the training 

performance of the machine learning model across every possible combination of 

hyperparameter values provided. The combination of hyperparameters that yields the 

best training performance is selected as the optimal set for the model (Ataei and Osanloo, 

2004). 

 Although this meticulous approach is time consuming, its simplicity to implement, 

and exhaustive nature makes it a preferred choice for many researchers and practitioners.  

This is because it provides confidence that the selected hyperparameters are, indeed, the 

best among the provided set, leading to reliable and robust machine learning model 

performance (Probst et al., 2019) 

Gray Level Co-occurrence Matrix (GLCM) Based Texture Analysis 

There are many methods proposed for extracting textural features in texture 

analysis. One such method, which is utilized in this research, is the gray level co-

occurrence matrix (GLCM) (Roberti de Siqueira et al., 2013). In image processing, 

especially when delving into the intricate domain of feature extraction, understanding the 

GLCM becomes crucial. This technique has formed the backbone of many significant 

advancements in this field (Hall-Beyer, 2017; Mohanaiah et al., 2013; Öztürk and Akdemir, 

2018; Xian, 2010; Zulpe and Pawar, 2012).  

At the most basic level, a GLCM encapsulates spatial patterns within a black-and-

white image. These spatial patterns can be summarized using statistics to create textural 

features that can aid in image analysis, such as the classification of multispectral images. 

Haralick et al. (1973) introduced GLCM-based texture features, and since then, they've 

found use in many remote sensing image analyses, especially for detecting invasive plant 

species (Baron et al., 2018; Baron and Hill, 2020; Dorigo et al., 2012; Li et al., 2019; 

Pearlstine et al., 2005).  
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A GLCM is a square matrix that provides insights into the spatial distribution of gray 

levels within an image. The term gray-level refers to the pixel value in a single-spectral-

band image (i.e., a black-and-white image). The number of rows and columns in a GLCM 

is defined by the number of gray levels in the image. Thus, an image where the gray tone 

is encoded as an unsigned integer will have 256 rows and 256 columns. Each element of 

a GLCM represents the relative frequency of occurrences of two pixels, one with gray-tone 

𝑖 and the other with gray-tone 𝑗, separated by a distance 𝑑 and oriented according to the 

angular relationship (𝑎) to each other. Thus, the co-occurrence pattern, captured by the 

GLCM, is dependent on both the separation distance (𝑑) and angular relationship (𝑎) 

between the pixels. The angular relationship between pixels can be defined by four 

different directions across an image: horizontal, vertical, left diagonal, and right diagonal, 

as illustrated in Figure 7. Because these angular relationships are reciprocal, the resultant 

GLCM is symmetric. This means patterns observed in one direction (e.g., up) are similar to 

its counterpart (e.g. down) forming a harmonized relationship, whether horizontal, 

vertical, or diagonal. 

 

 

 

 

 

 

 

 

Within this framework, various textural features emerge, and this study 

predominantly focuses on five: Angular Second Moment (ASM), Correlation (COR), 

Entropy (ENT), Sum Entropy (SENT), and Difference Entropy (DENT).  These features were 

selected because they are invariant to gray-tone transformations (Gonzalez et al., 2008; 

Haralick et al., 1973), and thus, are expected to be less sensitive to changes in illumination 

(e.g. shadows) and calibration errors.  

Figure 7: Illustration of the four primary directions (0°, 45°, 90°, and 135°) used in the computation of 

Haralick texture features for GLCM analysis, depicting the relative positioning of pixel pairs. 
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• ASM quantifies the uniformity of the distribution of gray levels separated by a 

distance 𝑑 in the direction 𝑎 in the image.  

• COR is a measure that indicates the presence of linear dependencies between gray 

levels separated by a distance 𝑑 in the direction 𝑎 in an image. It provides insights 

into the relationship between the rows or columns of the GLCM and their degree of 

association with each other (Conners and Harlow, 1980; Kekre et al., 2010; Tahir et 

al., 2003).  

• ENT is calculated by assessing the probability of occurrence of a pixel with a certain 

intensity next to a pixel with another intensity. A high entropy value from the GLCM 

indicates a high degree of complexity and variability in the image texture, suggesting 

a less uniform and more detailed pattern. Conversely, a low entropy value implies 

more homogeneity and less detail, reflecting a more predictable texture pattern 

(Baraldi and Panniggiani, 1995; Haralick et al., 1973; Haralick and Shanmugam, 

1973).  

• SENT assesses the complexity in an image by examining the sum of intensities of 

pixel pairs. Higher values indicate more complexity or texture information in the 

image (Haralick et al., 1973).  

• DENT is a measure of the variability in the differences between the gray levels of 

pixel pairs. Instead of looking at how often pairs of gray levels occur together, as 

with traditional GLCM entries, Difference Entropy examines the frequency 

distribution of the absolute differences between the gray levels of each pixel pair. It 

calculates the entropy of this difference distribution, capturing the texture's 

contrast. A high Difference Entropy value indicates a greater complexity or 

variability in texture contrast, while a low value suggests less contrast and more 

uniformity in the texture of the image (Haralick et al., 1973). 

This analytical method allows for a deeper understanding of image content, 

facilitating advancements in areas like medical imaging, remote sensing, and even 

automated quality inspection in manufacturing (Roberti de Siqueira et al., 2013).  
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Mathematical Representation of GLCM-based Features 

These features can be calculated using the equations below: 

Distribution of Gray Levels along the Horizontal Axis: 

𝑝𝑥(𝑖) =  ∑ 𝑝(𝑖 𝑗)
𝑁𝑔

𝑗=1                                                                                                                      (10) 

where 𝑖 is a horizontal position in the image. 𝑗. is a particular gray level intensity 

value. Ng is the number of possible gray level intensities. 𝑝(𝑖 𝑗) represents the probability 

of finding a pixel with gray level 𝑗. at the horizontal position 𝑖. 𝑝𝑥(𝑖) represents an average 

gray level intensity at horizontal position 𝑖, considering all vertical positions in the image. 

 

Mean of 𝒑𝒙: 

𝜇𝑥 =  
1

𝑁𝑔
∑ 𝑝𝑥(𝑖)

𝑁𝑔

𝑖=1                                                                                                                   (11) 

 

Standard deviation of 𝒑𝒙 

𝜎𝑥 = √
1

𝑁𝑔−1
∑ (𝑝𝑥(𝑖) − 𝜇𝑥)2𝑁𝑔

𝑖=1                                                                                                 (12) 

 

Distribution of Gray Levels along the Vertical Axis 

𝑝𝑦(𝑗) =  ∑ 𝑝(𝑖 𝑗)
𝑁𝑔

𝑖=1                                                                                                                  (13) 

where 𝑝𝑦(𝑗) represents an average gray level intensity at vertical position 𝑗, 

considering all horizontal positions in the image. 

 

Mean of 𝒑𝒚: 

𝜇𝑦 =   
1

𝑁𝑔
∑ 𝑝𝑦(𝑗)

𝑁𝑔

𝑗=1                                                                                                                        (14) 

Because of the assumption of symmetry in the angular relationships considered in 

this work, 𝜇𝑥 = 𝜇𝑦 .  
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Standard deviation of 𝒑𝒙: 

𝜎𝑦 =  √
1

𝑁𝑔−1
∑ (𝑝𝑦(𝑖) − 𝜇𝑦)

2𝑁𝑔

𝑖=1                                                                                       (15) 

Because of the assumption of symmetry in the angular relationships considered in 

this work, 𝜎𝑥 = 𝜎𝑦. 

Distribution of Gray Level Sum: 

𝑝𝑥+𝑦(𝑘) =  ∑ ∑ 𝑝(𝑖 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑘 = 𝑖 + 𝑗          𝑘 = 2,3, … ,2𝑁𝑔

                                                                                            

(16) 

𝑝𝑥+𝑦(𝑘) represents the probability distribution of the sum of gray level intensities 

of pixels at positions 𝑖 and 𝑗, and signifies the likelihood of encountering a specific sum of 

gray levels in the image. 

 

Distribution of Gray Level Difference: 

𝑝𝑥−𝑦(𝑘) =  ∑ ∑ 𝑝(𝑖 𝑗);
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑘 = |𝑖 − 𝑗|          𝑘 = 0,1,… , 𝑁𝑔 − 1
                                                                                

(17) 

 𝑝𝑥−𝑦(𝑘) represents the probability distribution of the difference in gray level 

intensities of pixels at position 𝑖 and 𝑗. 

 

Angular Second Moment (ASM): 

𝐴𝑆𝑀 = ∑ ∑ {𝑝(𝑖 𝑗)}2
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1                                                                      (18) 

where 𝑝(𝑖 𝑗) represents the probability (or normalized frequency) that a pixel 

with gray level 𝑖 is adjacent to a pixel with gray level 𝑗 in a particular direction (e.g., 

horizontal, vertical, diagonal). Squaring the probabilities emphasizes higher probabilities, 

which, in the context of the ASM, it gives a measure of uniformity. 

 

Correlation (COR): 
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𝐶𝑂𝑅 =
∑ ∑ (𝑖∗ 𝑗)𝑝(𝑖,𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1 −𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦
                                                                             (19) 

Entropy (ENT): 

𝐸𝑁𝑇 =  −∑ ∑ 𝑝(𝑖 𝑗)𝑙𝑜𝑔2[𝑝(𝑖 𝑗) + 𝜀]
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1                                             (20) 

where 𝜀 is a small constant value to ensure that the logarithm is defined 

(preventing log of zero, which is undefined), which ensures stability in the computation, 

especially for cases where 𝑝(𝑖 𝑗) might be zero. 

 

Sum Entropy (SENT): 

𝑆𝐸𝑁𝑇 =  −∑ 𝑝𝑥+𝑦
(𝑖)𝑙𝑜𝑔2 [𝑝𝑥+𝑦

(𝑖) + 𝜀]
2𝑁𝑔

𝑖=2                                                               (21) 

where 𝜀 is a small constant value to ensure that the logarithm is defined 

(preventing log of zero, which is undefined), which ensures stability in the computation, 

especially for cases where 𝑝(𝑖 𝑗) might be zero. 

 

Difference Entropy (DENT): 

𝐷𝐸𝑁𝑇 =  −∑ 𝑝𝑥−𝑦
(𝑖)𝑙𝑜𝑔2 [𝑝𝑥−𝑦

(𝑖) + 𝜀]
𝑁𝑔−1

𝑖=0                                                          (22) 

where 𝜀 is a small constant value to ensure that the logarithm is defined 

(preventing log of zero, which is undefined), which ensures stability in the computation, 

especially for cases where 𝑝(𝑖 𝑗) might be zero. 

In the scope of this research, the focus remains on a separation distance 𝑑 = 1 for 

deriving textural features. To represent these directional features in an all-encompassing, 

rotation-invariant manner, each of the four directional (vertical, horizontal, diagonal-up, 

diagonal-down) variations is summarized using mean and range statistics (Sebastian et al., 

2012). 

 Introduction of Scale-Space Theory and the Gaussian Pyramid 

Scale-space theory stands as a fundamental pillar in the realm of image processing, 

enabling a multi-scale representation of images, particularly when interpreting multi-
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spectral imagery using a Gaussian pyramid (GP). The essence of this research revolves 

around understanding how multi-scale attributes play a pivotal role in image classification. 

Importance of Multi-scale Analysis 

Objects and landscapes present in our environment inherently possess multi-scale 

characteristics. Depending on the observation scale, these objects might exhibit varying 

appearances. Similarly, biological vision systems display different levels of visual 

processing, each corresponding to a specific scale of information. As automated 

algorithms for image interpretation in novel scenes evolve, the challenge of determining 

relevant scales, without prior knowledge, becomes paramount. To address this, scale-

space theory advocates for simultaneous representation across all scales, offering a 

structured methodology to represent an image through a series of smoothed or blurred 

versions spanning different scales (Florack et al., 1992; Koenderink, 1984; Lindeberg, 

2009, 1995, 1990; Romeny, 2008; Witkin, 1983). 

Axiomatic Derivations and the Gaussian Approach 

A core tenet of scale-space theory, based on axiomatic derivations, posits that 

representations at coarser scales should ideally be simplified versions of their finer-scale 

counterparts (Lindeberg, 2013). Such a guideline naturally suggests a specific class of 

image operators: convolution using Gaussian kernels and their derivatives. These 

operators not only capture varying scale information but also retain pertinent image 

structures (Lindeberg, 2020; Mikolajczyk, 2002). The Gaussian-based approach, thus, 

emerges as an efficient and robust technique for a wide array of visual processing 

endeavors. Its application ranges from feature detection, classification, image-based 

pattern recognition, and image segmentation to enhancement via deblurring (Kuijper et 

al., 2003).   

With its foundations deeply embedded in both physics and biological vision, scale-

space theory provides a cohesive methodology for computer vision. By offering a 

systematic, multi-scale analysis tool, this theory has gained traction and widespread 

application in various computer vision tasks. As technology continues to evolve, the 

principles of scale-space theory will undoubtedly remain integral in shaping future 
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developments in the field of image processing and interpretation (Chomat et al., 2001; 

Florack, 1997; Henkel, 1995; Hummel et al., 1987; Kalitzin et al., 1997; Réti, 1995).  

Gaussian Convolution and Scale-Space 

Gaussian convolution plays a central role in the creation of scale-space 

representations by enabling the construction of a set of multi-scale images that capture 

image structures at various levels of granularity. The process involves applying a Gaussian 

kernel to the original image at different scales. This results in a series of increasingly 

smoothed versions of the image, each representing a different level of blurriness (Kuijper 

et al., 2003). The two-dimensional Gaussian function used to define a kernel is: 

 𝑔 (𝑥, 𝑦; 𝜎,
𝑥
,

𝑦
) =  

1

2𝜋𝜎2  𝑒𝑥𝑝
(− 

 (𝑥−𝑥)
2
+ (𝑦−𝑦)

2

2𝜎2 )
                                                                         (23) 

where, 𝜎 is the standard deviation of the Gaussian function, 
𝑥

 is the x-coordinate 

of the center of the Gaussian function. 
𝑦

is the y-coordinate of the center of the Gaussian 

function and 1 / (2πσ2) is the normalization factor to ensure that the integral of the 

Gaussian function over the entire domain is equal to 1, (𝑥 − 
𝑥
)
2
+ (𝑦 − 

𝑦
)

2
 is the 

squared distance from the origin, and the negative sign ensures that the function 

decreases as the distance from the origin increases. 

In Figure 8,  a 2D Gaussian distribution is depicted with 
𝑥

= 0, 
𝑦

= 0, , and σ=1. 
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Figure 8: 3D representation of a 2D uniform Gaussian kernel, visualizing the symmetrical distribution 

and peak concentration at the origin. 

The family of Gaussian kernels has several properties that facilitate its use for data 

smoothing, namely, linearity, separability, causality, and the semi-group property (Florack 

et al., 1992; Koenderink, 1984; Lindeberg, 1995; Sporring et al., 2013; Witkin, 1983). Of 

particular relevance is the property of separability, which allows an n-dimensional 

Gaussian kernel to be derived as the product of n one-dimensional kernels (Mikolajczyk, 

2002). This property can be represented mathematically as: 

𝑔(𝑥𝑦) = 𝑔(𝑥)𝑔(𝑦)                                                                                                                      (24) 

where, g(x) =
1

2𝜋𝜎2  𝑒𝑥𝑝
− 

(𝑥−𝑥)
2

2𝜎2   and g(y) =
1

2𝜋𝜎2  𝑒𝑥𝑝
− 

(𝑦−𝑦)

2𝜎2    

The separability property simplifies the computational complexity of convolutions and 

contributes to efficient image processing algorithms because it allows the smoothing of 

an image to be accomplished through two separate one-dimensional smoothing steps, 

each applied to one dimension of the image.  

Typically, the creation of different levels in the scale-space representation involves 

convolving the image with the Gaussian kernel. 

𝐿(𝑝𝜎) = 𝑔(𝜎) ∗ 𝐼(𝑝)                                                                                                                 (25)  

where ∗ is the convolution, with 𝐼 the image and 𝑝 = (𝑥𝑦) the point location. The 

Gaussian kernel, 𝑔 , is characterized by circularly symmetric and is parameterized by a 
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single scale factor, denoted as σ. Using the separability property of Gaussian kernels 

permits a two-dimensional Gaussian kernel to be decomposed into two orthogonal, one-

dimensional filters, which significantly reduces the computational complexity 

(Mikolajczyk, 2002). Furthermore, the implementation of a one-dimensional Gaussian 

kernel can be achieved using a recursive filter (Deriche, 1993). This recursive approach 

offers notable computational efficiency, particularly when dealing with larger Gaussian 

kernels (e.g., kernels which operate on a wide areas of neighbouring pixels) (Mikolajczyk, 

2002). 

Gaussian Pyramids 

The GP is a foundational tool for creating multi-scale representations of images which 

has been widely used in the realm of image processing and computer vision (Haddad and 

Akansu, 1991; Konlambigue et al., 2018; Li et al., 2018; Olkkonen and Pesola, 1996, 1996; 

Sporring et al., 2013). These pyramids have been hailed for their efficiency and wide 

applicability in various tasks like image compression, segmentation, and object detection 

(Adelson et al., 1984; Mpinda Ataky et al., 2020; Olkkonen and Pesola, 1996).  

The primary goal of a Gaussian pyramid is to facilitate the analysis of images at 

different resolutions. This is achieved by constructing copies of an image at different levels 

of detail and scale. The pyramid itself is constructed by stacking images with varied 

resolutions: starting with the original image at the base and progressively scaling it down 

to the top, which becomes a single-pixel representation indicating the average value of 

the entire image (see Figure 9). This layered representation not only reduces noise in the 

image as pyramid levels increase but also enhances its smoothness, making it invaluable 

for various image processing applications (Li et al., 2018). 

Constructing such a pyramid involves a sequence of operations. Initially, the image 

undergoes convolution with a Gaussian kernel, which, is typically centered around the 

center of a pixel or a group of pixels. The standard deviation of the kernel dictates the 

degree of image blurring (Binaghi et al., 2003; Chaudhuri and Marron, 2000). Post-

blurring, the image is then subjected to downsampling. Here, every 2x2 block of pixels in 

the image is averaged, but this doesn’t alter the image’s spatial extent. Instead, this 
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method decreases the image’s resolution by creating pixels with spatial footprints that are 

four times larger. The culmination of this process is the halving of the image’s size, 

transitioning an M×N image to an M/2×N/2 version, thus cutting down its area to one-

fourth of its original size, a process often termed as an octave or level (Li et al., 2018). This 

process is visually depicted in Figure 9, illustrating the progression from the original image 

at l0 to the fourth level of the Gaussian Pyramid (l5). 
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Figure 9: Gaussian Pyramid. The image illustrates five levels of the GP, spanning from the original image 

at level l0 to the fifth level, l4. 
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As depicted in Figure 9, images of varying resolutions can be visualized as a stacked 

structure, called a pyramid (Adelson et al., 1984). At the base of this structure is the 

original image (G0), which has the highest spatial resolution of all the images in the 

pyramid. Whereas the lowest resolution image (GN) is found at the apex of the pyramid. 

Each image (Gl) in the pyramid is referred to as inhabiting a level (l) in the pyramid, where 

the zeroth level corresponds to the original image at the base of the pyramid. As the level 

in the pyramid increases, the image resolution decreases, culminating in the Nth level, 

which corresponds to the lowest resolution image at the apex. To create the image at the 

l-th level in the pyramid, the image at the (𝑙 − 1)-th level is convolved with the Gaussian 

kernel and the resulting blurred image is then resized. Thus, Gl(x, y) is an evolution of Gl-

1(x, y), each step seamlessly transforming the image’s resolution. 

𝐺𝑙(𝑥, 𝑦) =  ∑ ∑ 𝑤(𝑚,  𝑛) ∗ 𝐺𝑙−1 (2𝑅𝑥𝑥 + 𝑚,  2𝑅𝑦𝑦 + 𝑛)𝑇
𝑛= −1

𝑇
𝑚= −1                       (26) 

In this equation: 

• 𝐺𝑙(𝑥, 𝑦) signifies the pixel value at location (x, y) in the l-th level of the Gaussian 

pyramid. 

• 𝐺𝑙−1 (2𝑅𝑥𝑥 + 𝑚, 2𝑅𝑦𝑦 + 𝑛) represents the pixel value from the previous level (l-

1) of the Gaussian pyramid.  

The terms 2𝑅𝑥𝑥 + 𝑚 and 2𝑅𝑦𝑦 + 𝑛 adjust coordinates for downsampling 

with 𝑅𝑥and 𝑅𝑦 being the respective scaling factors for the 𝑥 and 𝑦 axes. 

• The weight w(m, n) is derived from a predefined Gaussian kernel, emphasizing 

the importance of each pixel’s proximity. It functions as a smoothing filter, 

reducing rapid pixel value changes across the image. When convolved with an 

image, it averages pixel values within its domain, generating a blurring effect. 

• T determines the limit or the radius of the kernel in each direction. If 𝑚 and 𝑛 

range from -T to T, the kernel would be of size (2T+1)x(2T+1).  

The symbol ∗ is the convolution operation, while the downsampling ratios in the x 

and y directions are denoted as Rx and Ry, respectively. 
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Digital images discretize space into pixels, thus, to create a GP, the Gaussian kernel 

must be discretized. The Gaussian kernel used in this work is represented as (Bradski, 

2000):  

1
256⁄

[
 
 
 
 
1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1]

 
 
 
 

 

 

Each value in the matrix corresponds to a weight, and when this kernel is 

convolved with an image, it gives a weighted average of the pixel values in the 

neighborhood defined by the kernel. This kernel gives more weight to the center pixels 

and increasingly less weight is given as the distance from the kernel center increases, 

leading to a Gaussian or bell-curve distribution of weights. The factor 1 256⁄  normalizes 

the kernel, ensuring that the sum of all weights is 1. 

Figure 2-6 shows an example of a Gaussian pyramid constructed from a single 

spectral-band (green) image, which was captured by an RPAS at the Laurie Guichon 

Memorial Grasslands Interpretive Site. Level 0 (l0) in this pyramid corresponds to the 

original grey-scale image. The subsequent levels are constructed by applying equation 24 

and downsampling, which involves reducing the number of pixels by removing even rows 

and columns. Thus, to create the first layer, l1, the Gaussian kernel is applied to the original 

image (l0). The result is then downsampled so that each pixel represents an area 4x larger 

on the ground. Here, l is an element of the set {0,1,2,3, …, N}, where l represents the 

number of layers in the Gaussian pyramid. 

Conclusion 

 In this chapter, the methods that are central to the research have been 

discussed. Moving forward, the approach will involve using RF and SVM classifiers, both 

of which are trained using a 10-fold cross-validation method.  Hyperparameters for these 

models will be identified using grid-search. To enhance the spectral information present 

in the RPAS-acquired imagery, GLCM texture features will be created. Additionally, GPs will 
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be employed to achieve a multi-scale representation of the images, enabling a thorough 

analysis across different scales. Features will be selected from these GP representations 

of the RPAS-acquired imagery using the two-step RFECV method described above. The 

subsequent chapter will detail how these methods are applied to map spotted knapweed 

in a grassland ecosystem.
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Chapter 3 Invasive Species 
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Introduction 

The primary objective of this work is to evaluate the impact of image spatial 

resolution when mapping spotted knapweed in a grassland ecosystem. The data used for 

this study were collected using a consumer-grade remotely piloted aircraft system (DJI 

Phantom 4) and multispectral imager (Parrot Sequoia). Processing the raw imagery using 

Pix4D Pro (Pix4Dmapper, 2018) resulted in four images with a spatial resolution of 2.9 cm 

and representing the green, red, red-edge, and near-infrared spectral bands. From these 

images, three vegetation index (NDVI, reNDVI, and gNDVI) images (also with a 2.9 cm 

spatial resolution) were created. These datasets are described in greater detail in Section 

1.8 of this thesis and in Baron (2020). 

This chapter will discuss how Gaussian pyramids (GPs) were used to create a multi-

scale representation of these seven images, how features were extracted from these 

images, and how these features were used to create machine-learning classifiers using 

both random forests (RF) and support vector machines (SVM). The outcome of classifiers 

built with features calculated from different spatial resolution images will be analyzed to 

reveal scale dependencies in feature sets.  Finally, classifiers built using features from all 

spatial scales will be compared to evaluate the importance of multiscale feature sets in 

this classification task. A key aspect of this discussion is the comparison of the data 

processing framework developed in this work, which includes scale optimization, with the 

framework employed in previous work (Baron and Hill, 2020), highlighting the intention 

of this study to evaluate scale-space feature analysis. 

 Methods 

All analyses were conducted using PyCharm 2023.2.2, an Integrated Development 

Environment (IDE) specifically for the Python programming language, which facilitated the 

implementation of image processing through the Scikit-Image 0.20.0 libraries (Van der 

Walt et al., 2014) and machine learning, specifically Random Forest (RF) and Support 

Vector Machine (SVM), via the Scikit-Learn 1.2.2 libraries (Pedregosa et al., 2011). GP 

images were created using the OpenCV library 4.5.4.58 (Bradski, 2000). Data management 

and analysis were also performed with Pandas 1.4.0, an open-source Python library 
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renowned for its high-performance and user-friendly data structures and data analysis 

tools (McKinney et al., 2010). Numerical computations, particularly on arrays and 

matrices, were handled by NumPy 1.21.4, a Python module known for its rapid 

computational capabilities (Harris et al., 2020). The Mahotas library, which is dedicated to 

computer vision and image processing, was utilized to compute the Gray Level Co-

occurrence Matrix (GLCM) (Coelho, 2013). Finally, visualization and mapping of the results 

were done using ArcMap 10.7.2.  

Feature Extraction 

Gaussian Pyramids 

The GP of an image consists of a series of increasingly blurred images constructed from 

the original image. The original image constitutes level 0 in the image pyramid, and at 

each higher level in the pyramid, the image size resolution decreases while the degree of 

blurring increases. This operation was performed four times to generate four different 

levels of the Gaussian pyramid, starting  at level-0 (l0), which constitutes the original image 

(40x40 pixels), to level-4 (l4), the fifth level of the GP, which has 3x3 pixels.  Figure 10  

shows the Gaussian pyramid constructed for a green band image used in this study. 

The GP method was applied to the four spectral bands (Green, Red, NIR, Red-edge) 

and three multiband vegetation indexes (NDVI, gNDVI, reNDVI) images using the OpenCV 

library (Bradski, 2000). This created a set of 7 image GPs, with 5 levels each.  Level-0 of 

each of these GPs is populated by the spectral image produced from the RPAS-acquired 

data by Pix4D (or a multiband vegetation index based on these data), and has a ground 

sampling distance (e.g., the on-the-ground footprint of a pixel) of 2.9 cm. For each 

successive level in the pyramid, the GSD increases by a factor of 2. The GSD at each level 

in the constructed pyramids is listed in Table 3. 
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Table 3: Relation between each level of GP and GSD. 

GP Level Ground Sample Distance (GSD) 

Level 1 2.9cm×2= 5.8 cm 

Level 2 5.8 cm×2= 11.6 cm 

Level 3 11.6 cm×2= 23.2 cm 

Level 4 23.2 cm×2= 46.4 cm 

 

l0 

l3 

l1 

l2 

l4 

Figure 10: Gaussian Pyramid. The image illustrates five levels of the GP, spanning from the original 

image at level l0 to the fifth level, l4. Note the extent of the physical domain represented by each 

image stays the same despite the reduction in the number of number of pixels constituting the 

image. 
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GLCM Features 

This work will use meta-pixel-based image analysis, as presented by Baron and Hill 

(2019) to identify the relative abundance of spotted knapweed in the study area.  In this 

method, a chessboard segmentation is applied to divide each image into a set of non-

overlapping squares, called metapixels, which are the same size as a field-survey quadrat 

(i.e., 1m2). Features to describe these metapixels are then calculated from the image pixels 

within the metapixel boundaries. In this work, 12 features were extracted from each 

metapixel are listed in Table 4 and include the mean and standard deviation of the pixel 

values and ten GLCM-based texture features. These 12 features were extracted for each 

metapixel in each of the 5 GPs, resulting in a set of 84 features describing metapixel per 

level in the GPs. Across all 5 levels in the GPs, this amounts to a set of 420 features per 

metapixel. 

Table 4: GLCM Extracted Features. 

Extracted Features 

Mean of a pixel value 

Standard deviation of a pixel value 

Mean ASM 

Range ASM 

Mean Entropy 

Range Entropy 

Mean Sum Entropy 

Range Sum Entropy 

Mean Difference Entropy 

Range Difference Entropy 

Mean Correlation 

Range Correlation 
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Feature Compilation  

Following the work of Baron and Hill (2020),  the relative abundance of spotted 

knapweed within each surveyed quadrat was represented as a qualitative class rather 

than a quantitative proportion. This was done to ensure that there were sufficient 

examples in the dataset of each abundance of spotted knapweed to train a classifier. Three 

non-overlapping classes, “None”, “Moderate” and “High”, were defined.  The definitions 

of these three classes, as well as the number of cases in the dataset of each class can be 

found in Table 5. For more information, see Baron et al. (2020) and Baron (2020) or section 

1.8 of this thesis. 

 

Table 5: Classification of Spotted Knapweed Abundance in Surveyed Sites. 

Abundance of Knapweed Number of Cases Qualitative Class 

Either absent or present in trace amounts 51 None 

No more than 25% cover 63 Moderate 

Exceeding 25% 67 High 

 

The datasets for training and validating the classifiers in this study were generated by 

extracting 420 multi-scale features from metapixels delineated by the boundaries of 93 

survey quadrats across three sites (31 quadrats were measured at each field site). These 

data were then split into two distinct subsets: a training set and a validation set. The 

validation set consisted solely of data collected on July 4, 2018, from the 31 quadrats in 

Site 3, while the training set comprised data from the remaining dates and sites (Site 1 on 

July 4th and 19th, Site 2 on July 4th and 12th, and Site 3 on July 12th and 19th). To enhance 

the performance of the classifiers stratified random sampling was used to construct a 

balanced training set (Zhu et al. 2016). A balanced training set has an equal number of 

examples representing each outcome classification. In this work, stratified random 

sampling was used to oversample the minority class and undersample the majority classes 

to equalize the sample sizes across all classes (Ma et al., 2015). For training both RF and 

SVM classifiers, stratified random sampling was used to create training sets that were then 
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used to train both the RF and SVM classifier. This approach ensured that each classifier 

was trained using the same set of training examples, allowing for a controlled comparison 

of their performance. The training set consisted of 150 samples in total: 50 in the 'High' 

category, 50 in the 'Moderate' category, and 50 in the ‘None’ category. Conversely, the 

validation set comprised 31 samples, with 17 in the 'High' category, 13 in the 'Moderate' 

category, and one representing the ‘None’ category. 

 

Model Creation 

Classifiers based on Support Vector Machines (SVM) and Random Forests (RF) 

were developed to predict the relative abundance of spotted knapweed within a 

metapixel, utilizing the features specified in Table 4 calculated for each of the spectral 

band or vegetation index GPs. An SVM and RF classifier was developed using training data 

from each of the 5 levels in the data GPs. These classifiers are designated as GP0 through 

GP4, correlating with the pyramid levels from zero to four. Another pair of SVM and RF 

classifiers, hereafter indicated as ‘GPs’, was constructed using a feature set that 

concatenates the features across all the levels in the GPs. 

Classifier construction began with feature selection to identify an optimal feature 

subset for classification. Recursive feature elimination driven by an RF classifier with 500 

trees was used to identify the optimal feature set. Because of stochasticity in the RF 

training process, optimal feature selection was performed using a two-step ensemble 

method.  The first step used recursive feature elimination to identify the optimal number 

of features (Nopt).  This process was repeated 20 times, and the average cross-validation 

score was tabulated for each possible number of features from 1 to N, where N is the 

entire feature set.  The optimal number of features was identified as the number of 

features that generated the highest average cross-validation score. The second step used 

recursive feature elimination to identify the optimal feature set of size Nopt.  This step was 

also repeated 20 times. These 20 feature sets were analyzed to find the most frequently 

selected features.  The Nopt features that were selected most frequently in these 20 

iterations were declared to be the optimal feature set. 
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Once the optimal feature subset was identified, these features were used along 

with a grid search to identify the optimal hyperparameter settings for the training process. 

The hyperparameters that were tuned, and the range of values considered by the grid 

search during this process are listed in Tables 8 and 9 for RF and SVM classifiers, 

respectively. 

Finally, the model was trained using the optimal feature set and hyperparameters.  

This training was conducted via 10-fold cross-validation, and the best-performing model 

was retained as the final trained classifier.  Each classifier was then tested using the 

independent validation data set consisting of data collected from site 3 on July 4. This 

approach ensures that the classifier's ability to generalize is accurately assessed using data 

that was not involved in the tuning or training processes. The analysis of the classifiers' 

performance is based on the performance metrics shown in Table 6 (Murphy, 2012).  

 

Table 6: Classifier performance metrics used to evaluate classifiers performance. 

Classifier performance metrics 

Accuracy 

Precision 

Recall 

F1-score 

Macro Average 

Weighted Average 

Support 

 

A flow chart of the classifier training and testing process is illustrated in Figure 11. 
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Figure 11: A procedure of classifying Spotted Knapweed using RF and SVM classifiers. 

 

Results 

Feature Selection 

Model development began with identifying optimal features using the RFECV method, 

facilitated by a RF classifier composed of 500 trees. Figures 12 to 17 show the average 

cross-validation score versus number of features for each of the 6 feature sets (GP0, GP1, 

GP2, GP3, GP4, and GPs) the results of the RFECV process. In these plots, each point 

indicates the average cross-validation score over the 20 iterations of the RFECV process. 

These data are used to select the optimal number of features in each feature set by 

identifying the feature set size that optimizes the average cross-validation score. 

Figure 12 illustrates the RFECV results for the GP0 data. The curve indicates the 

relationship between the number of features and the model's mean CV score. Starting 

from a low number of features, there is a notable rise in the CV score, which rapidly 
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increases and then levels off as more features are added. The peak of this curve is 

highlighted at the point '21, 0.534', where the model achieves the best performance with 

21 features. Beyond this peak, the CV score tends to plateau, showing a consistent trend 

with minor fluctuations around this peak value. This plateau suggests that adding more 

than 21 features does not significantly improve the model's predictive capability and that 

the model has reached a balance between feature complexity and performance. The 

shape of the curve is characteristic of an initial gain in performance with additional 

features, followed by stabilization, indicating that further feature additions are not 

contributing to the predictive strength of the model.  

 

 

Figure 12: RFECV Results for GP0, showing the optimal selection of 21 features. The x-axis represents 

the number of features retained, and the y-axis depicts the average of the mean cross-validation 

scores, as calculated over 20 iterations. 

 

Figure 13 illustrates the RFECV results for the GP1 data. The curve begins with a 

sharp increase, where the mean CV score swiftly rises from the lower number of features, 

reaching a prominent peak at '16, 0.567'. This suggests that at 16 features, the model 
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attains its highest level of predictive accuracy.  Beyond this point, the performance sharply 

declines, demonstrating that additional features detract from the model's effectiveness. 

Following this decline, the curve levels off, signifying that further inclusion of features fails 

to significantly enhance the mean CV score. This leveling persists throughout the rest of 

the plot, marked by minor fluctuations but lacking any substantial upward movement. 

Such a pattern suggests that expanding the feature set beyond the optimal count of 16 

leads to diminished performance. The curve's trajectory is indicative of a typical 

phenomenon in feature selection, whereby the marginal gain of adding extra features 

eventually plateaus or even reverses, reflecting the trade-off between model complexity 

and generalization.  

 

 

Figure 13: RFECV Results for GP1, showing the optimal selection of 16 features. The x-axis represents 

the number of features retained, and the y-axis depicts the average of the mean cross-validation 

scores, as calculated over 20 iterations. 

 

Figure 14 illustrates the RFECV results for the GP2 data. The curve starts with a 

steep ascent in the mean CV score, reaching an early peak at the point' 4, 0.582'. This 

indicates that the model's predictive accuracy is maximized with just 4 features. Following 
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this initial peak, the mean CV score decreases before plateauing, suggesting that 

additional features beyond the optimal four serve to decrease the model performance. 

The plateau is characterized by a consistent average score with minor fluctuations around 

the peak value, reinforcing the notion that a small, concise set of features is sufficient for 

the model to achieve its best performance. The profile of the curve demonstrates the 

principle of parsimony in model building, where simpler models with fewer features may 

yield the best generalization. It also illustrates the concept of diminishing returns in 

feature inclusion: beyond the optimal number, additional features do not contribute to 

improved model accuracy and may instead introduce noise or unnecessary complexity. 

 

 

Figure 14: RFECV Results for GP2, showing the optimal selection of 4 features. The x-axis represents 

the number of features retained, and the y-axis depicts the average of the mean cross-validation 

scores, as calculated over 20 iterations. 

 

Figure 15 illustrates the RFECV curve for the GP3 data. The mean CV score rises 

rapidly as more features are introduced into the model, indicating that each new feature 

contributes significantly to improving the model's predictive accuracy at this stage. The 

curve shows that the model is initially gaining valuable information from the incremental 

4, 0.582

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60 70 80 90

RFECV GP2



 64 

addition of features, which is reflected in the increasing CV scores. This suggests that the 

features added early in the sequence are highly relevant and provide new, useful 

information that the model can leverage to improve its predictions. As we approach the 

peak at '16, 0.56', the rate of increase in the mean CV score begins to slow down, 

indicating that we are nearing the optimal number of features. Each additional feature 

contributes less to the model's performance, which is typical in feature selection 

processes where early additions have more impact, and the benefit of adding more 

features diminishes as the number of features grows. The peak itself represents the point 

of balance where the model has incorporated just enough features to maximize its 

performance without yet overfitting or incorporating redundant information. Beyond this 

peak, as we continue to add features, the performance will not improve further and even 

start to decline, as seen in the rest of the plot. 

 

Figure 15: RFECV Results for GP3, showing the optimal selection of 16 features. The x-axis represents 

the number of features retained, and the y-axis depicts the average of the mean cross-validation 

scores, as calculated over 20 iterations. 

 

Figure 16 illustrates the RFECV results for the GP4 data.  In this figure, the mean 

cross-validation score ascends gradually, reflecting a steady improvement in model 

performance with each additional feature. This growth suggests that the early features 

added are each contributing meaningful information that the model is able to use to 
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enhance its accuracy. Beyond the peak at '8, 0.524333333', the curve levels off, indicating 

that the inclusion of more features does not lead to further significant gains in mean CV 

score. This plateau suggests that the model has captured the most informative features, 

and additional features do not contribute new information that could improve the model’s 

performance. The relatively flat line continuing to the right of the peak implies that the 

additional features might be redundant or irrelevant, as they do not enhance the model's 

predictive power. 

 

 

Figure 16: RFECV Results for GP4, showing the optimal selection of 8 features. The x-axis represents 

the number of features retained, and the y-axis depicts the average of the mean cross-validation 

scores, as calculated over 20 iterations. 

 

In Figure 17, which visualizes the RFECV results for a combined feature set from all 

GP levels, the trajectory of the CV scores forms a distinctive shape. Initially, there's a rapid 

ascent in the mean CV scores as the number of features increases, reaching an apex at the 

point marked '5, 0.6304'. This peak signifies the most efficient number of features for the 

model, indicating that beyond this count, the additional features may not contribute 

significantly to the predictive power and might even introduce redundancy. After this 
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peak, the mean CV scores exhibit a gradual decline, suggesting a plateau effect followed 

by a slight downward trend as the number of features continues to grow. This pattern 

implies that the Random Forest algorithm, while generally robust to multicollinearity due 

to its feature bagging approach, is not completely resistant to the diminishing returns or 

potential adverse effects of including too many similar or non-informative features. The 

overall shape of the curve reinforces the principle that beyond a certain point, adding 

more features can lead to overfitting, where the model becomes overly complex and less 

generalizable to new data. 

 

 

Figure 17: RFECV Results for GPs, showing the optimal selection of 5 features. The x-axis represents 

the number of features retained, and the y-axis depicts the average of the mean cross-validation 

scores, as calculated over 20 iterations. 

  

Once the size of the optimal feature set was identified for each data set, another 

iterative process was conducted to select the features that constituted the optimal feature 

set for each data set.  This process involved iteratively performing recursive feature 

elimination with an RF model, consisting of 500 trees, to identify a data set of size nopt, 

where nopt is the size of the feature set identified in Figures 12 through 17. This feature 
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selection step was repeated 20 times, and the features selected in each iteration were 

counted.  The nopt features which were selected the most often during this process were 

declared to be the optimal feature set for the input data. 

During this feature selection process, 40 out of 84 features were included in the 

optimal feature set for at least one of the GP levels considered. In Table 7 the color-coding 

helps to quickly visualize which features are most frequently selected across different GP 

levels, indicating their importance and relevance in the classification task. Features that 

appear in more columns are likely to be more robust for the model. The 'nir_mean' and 

'rededge_mean' features stand out as they are consistently chosen across all GP levels, 

suggesting that they are significant predictors regardless of the GP level or when using a 

combination of all levels. 

Table 7: Optimized Features for GP0, GP1, GP2, GP3, GP4 and concatenated GPs.
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Hyperparameter Optimization 

A grid search was used to identify the optimal hyperparameters for each classifier 

developed in this work.  The hyperparameters tuned and the range of values included in 

the grid search are listed in Table 8 and 9 for the RF and SVM models, respectively. 

 

Table 8: Range of hyperparameter values considered for tuning the Random Forest Classifier using 

Grid Search. 

 

 

 

 

 

 

 

 

 

Table 9: Range of hyperparameter values considered for tuning SVM using Grid Search. 

C 0.1, 1, 10, 100 

Degree 2, 3, 4, 5 

Gamma Scale, Auto, 0.1, 1, 10 

Kernel linear, Rbf, Poly, Sigmoid 

 

Table 10 lists the optimized hyperparameters identified for the RF models 

developed using data from each of the 5 levels of the GP (GP0 to GP4) and the composite 

of all levels (GPs). The table is organized with hyperparameters listed in rows and the GP 

levels, including the combined GPs, in columns. The 'bootstrap' hyperparameter indicates 

whether bootstrap sampling is used when building trees; it is set to FALSE for GP0, GP1, 

GP2, and the combined GPs; thus, the entire training set is utilized for tree construction. 

Conversely, for GP3 and GP4, this parameter is TRUE, signifying the use of bootstrap 

bootstrap TRUE, False 

max_depth 20, 40, 80, 100 

max_features sqrt 

min_samples_leaf Integers (1,10) 

min_samples_split Integers (2,11) 

n_estimators 400, 500, 600, 800, 1000, 1200,1500 
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samples. The 'max_depth' hyperparameter, which restricts tree depth to prevent 

overfitting, was set at 20 for all levels. The 'Max_features' hyperparameter determines the 

number of features considered at each split.  The square-root of the number of features 

was constantly selected across all levels. Variability is observed in 'min_samples_leaf' and 

the ‘min_samples_split’ hyperparameters. The ‘min_samples_leaf’ parameter sets the 

minimum samples at a leaf node, while 'min_samples_split' parameter specifies the 

threshold for splitting nodes. The 'n_estimators' hyperparameter, reflecting the number 

of trees in the forest, also takes values for the data aggregated at different levels of the 

GPs. This suggests that the pattern complexity may change at different levels of spatial 

aggregation. Because the GPs data set has features at different levels of spatial 

aggregation, it is expected that these data require a larger number of trees for optimal 

performance. 

Post-tuning, an elevation in cross-validation scores signifies that the model's 

accuracy has been enhanced, demonstrating the importance of hyperparameter tuning 

for building effective RF classifiers. 

 

Table 10: Result of RF hyperparameters tuning for GP0 to GP4 and GPs. 

 

Hyperparameters GP0 GP1 GP2 GP3 GP4 GPs 

bootstrap FALSE FALSE FALSE TRUE TRUE FALSE 

max_depth 20 20 20 20 20 20 

max_features sqrt Sqrt sqrt sqrt sqrt sqrt 

min_samples_leaf 1 1 1 2 3 1 

min_samples_split 4 4 15 2 11 5 

n_estimators 500 400 500 600 400 800 



 

Table 11 lists the optimized values of the SVM hyperparameters for the data at 

different GP levels and the concatenated dataset encompassing all levels (GPs). A notable 

variation in the 'C' parameter across the GP levels indicates that unique regularization 

strengths are optimal at each level, tailored during the hyperparameter tuning phase to 

enhance model performance. The 'Gamma' parameter, set to 'Scale' for GP0, GP4, and the 

combined GPs, is adjusted automatically relative to the dataset's feature count, suggesting 

an adaptive approach to feature influence. In contrast, fixed values are assigned to 

'Gamma' for GP1, GP2, and GP3, denoting a precise calibration for these individual levels. 

The 'Kernel' choice remains consistent with 'RBF' for GP0 through GP4, indicating a 

preference for this kernel's ability to handle non-linear relationships. Conversely, a 'Linear' 

kernel is chosen for the combined GPs, suggesting an underlying linear separability when 

the GP levels are merged. 

 

Table 11: Result of SVM hyperparameters tuning for GP0 to GP4 and GPs. 

Hyperparameters GP0 GP1 GP2 GP3 GP4 GPs 

C 100 1 100 10 1 10 

Degree 2 2 2 2 2 2 

Gamma Scale 0.1 0.1 0.1 Scale Scale 

Kernel RBF RBF RBF RBF RBF Linear 

 

Classifier Performance 

Classification Based on the GP0 Feature Set 

Figures 18 and 19 illustrate the respective performance of the GP0 RF and SVM 

classifiers on the validation dataset.  Each cell of the confusion matrix shows the 

proportion of the total number of predictions that fall into the corresponding category. 

For instance, in Figure 18, the cell in the first row and first column indicates that 82% of 

the 'High' class was correctly predicted. The middle cell in the first row of this figure shows 

that 6% of the 'High' class instances were incorrectly predicted as 'None', and the cell in 

the first row and third column shows that 12% of the 'High' class instances were 
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incorrectly predicted as 'Moderate'. The color gradient, ranging from light to dark green, 

reflects the magnitude of the proportions, with darker shades representing higher 

proportions.  
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High Moderate None 
High 14 1 2 
Moderate 5 2 6 
None 0 0 1 

 

Figure 18: RF confusion matrix for the GP0 validation set. 
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Moderate 5 1 7 
None 1 0 0 

 

Figure 19: SVM confusion matrix for GP0 validation set. 

 

Table 12 reports the performance of both the RF and SVM GP0 classifiers on the 

validation data set from July 4. 
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Table 12: RF and SVM classification results for the GP0 feature set. 

 
Precision 

RF 

Precision 

SVM 

Recall 

RF 

Recall 

SVM 

F1-

score 

RF 

F1-

score 

SVM 

Support 

RF 

Support 

SVM 

High 0.82 0.62 0.74 0.59 0.78 0.61 19 17 

None 0 0 0 0 0 0 3 1 

Moderate 0.46 0.78 0.67 0.54 0.55 0.64 9 13 

Macro Avg 0.43 0.47 0.47 0.38 0.44 0.41 31 31 

Weighted Avg 
0.64 0.67 0.65 0.55 0.64 0.6 

31 31 

 

Accuracy  Value Support 

RF  0.65 31 

SVM  0.55 31 

 

From this table, it can be seen that: 

▪ High Class: For the High class, the RF classifier outperforms the SVM in both precision 

(0.82 vs. 0.62) and recall (0.74 vs. 0.59), indicating that RF is more accurate and also 

more comprehensive in identifying true High-class cases. The F1-score, which 

balances precision and recall, is correspondingly higher for RF (0.78 vs. 0.61), affirming 

its superior performance in this class. This suggests that RF is more adept at handling 

instances in this category, which could be attributed to its ensemble approach, 

potentially capturing more complex patterns within the High-class features than the 

SVM. 
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▪ Moderate Class: In the Moderate class, SVM shows a higher precision (0.78 vs. 0.46) 

but lower recall (0.54 vs. 0.67) compared to RF. While SVM is better at correctly 

labeling Moderate-class instances when it does predict them, it fails to identify a 

significant proportion of actual Moderate-class cases, as evidenced by the lower 

recall. RF, although less precise, is more reliable in identifying the presence of the 

Moderate class, but it also misclassifies more non-Moderate instances as Moderate. 

The F1-scores are quite close (0.55 for RF and 0.64 for SVM), suggesting a trade-off 

between precision and recall for the two models. 

▪ None Class: Both classifiers fail to identify any instances of the None class, with all 

scores at 0. This indicates a significant challenge for both models in detecting this 

class, which could be due to an extremely small number of instances (Support for RF 

is 3 and SVM is 1). The lack of learning material for this class makes it difficult for 

both classifiers to establish a pattern, rendering them ineffective for the None-class. 

When comparing the overall performance, RF demonstrates a higher accuracy (0.65) 

than SVM (0.55). This suggests that across all classes, RF maintains a better balance 

between precision and recall, leading to more accurate classification results. The Macro 

Avg and Weighted Avg scores also support this, with RF showing a slight edge in 

performance over SVM. These metrics suggest that RF is generally more effective in 

classifying instances across this dataset, especially considering the Weighted Avg, which 

takes the support of each class into account, reflecting the real-world distribution of 

classes. 

In summary, RF tends to have a more balanced performance across the High and 

Moderate classes, while SVM struggles with recall but has instances where it can be highly 

precise. Neither model performs well in the None class.  This is probably due to an 

insufficient number of examples of this class in the training data. Overall, RF is more 

accurate and consistent across classes, making it a more reliable choice for classification 

in this scenario. 
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Classification Based on the GP1 Feature Set 

Figures 20 and 21 illustrate the respective performance of the GP1 RF and SVM 

classifiers on the validation dataset.  
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Figure 20: RF confusion matrix for the GP1 validation set. 
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None 0 1 0 

 

Figure 21: SVM confusion matrix for the GP1 validation set. 

 

Table 13 reports the performance of both the RF and SVM classifiers on the GP1 

validation data set from July 4.   
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Table 13: RF and SVM classification results for the GP1 feature set. 

 
Precision 

RF 

Precision 

SVM 

Recall 

RF 

Recall 

SVM 

F1-

score 

RF 

F1-

score 

SVM 

Support 

RF 

Support 

SVM 

High 0.65 0.63 0.73 0.71 0.69 0.67 15 17 

None 0 0.2 0 1 0 0.33 2 1 

Moderate 0.62 0.57 0.57 0.31 0.59 0.4 14 13  

Macro Avg 0.42 0.47 0.43 0.67 0.43 0.47 31 31 

Weighted 

Avg 0.59 0.59 0.61 0.55 0.6 0.54 31 31 

  

Accuracy  Value Support 

RF   0.61 31  

SVM   0.55 31 

 

 

From this table, it can be seen that: 

▪ High Class: Both classifiers perform comparably in precision for the High class, 

with RF at 0.65 and SVM at 0.63. However, RF has a slightly better recall of 0.73 

compared to SVM's 0.71, indicating that RF is marginally better at capturing the 

majority of High-class cases. The F1-scores are also similar, with RF at 0.69 and 

SVM at 0.67, indicating balanced precision and recall for both classifiers in this 

category. 

▪ Moderate Class: In the Moderate class, RF demonstrates a higher precision (0.62 

vs. 0.57) and recall (0.57 vs. 0.31) compared to SVM, which is mirrored in the F1-

score (0.59 for RF vs. 0.4 for SVM). This indicates that RF is more adept at correctly 
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identifying and capturing Moderate-class instances than SVM, which is less 

reliable in recognizing true Moderate cases. 

▪ None Class: The None class presents an interesting contrast. RF fails to identify 

any None-class instances (precision, recall, and F1-score at 0), whereas SVM, 

despite its limited precision at 0.2 and perfect recall at 1, manages an F1-score of 

0.33. This suggests that while SVM is able to recognize the None-class instances, 

it tends to misclassify other classes as None, as evidenced by its low precision. 

Based on these results, it can be seen that RF is more consistent and accurate 

across the majority of classes and the dataset as a whole. SVM shows some strengths, 

particularly in the None class, but its higher Macro Average recall does not translate 

to better overall accuracy or balance between precision and recall, as reflected in the 

lower overall accuracy and Weighted Average F1-score. RF's higher values in these key 

metrics make it the more reliable classifier for this particular dataset at GP1. 

Classification Based on the GP2 Feature Set 

Figures 22 and 23 illustrate the respective performance of the GP2 RF and SVM 

classifiers on the validation dataset.  
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Figure 22: RF confusion matrix for the GP2 validation set. 
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Figure 23: SVM confusion matrix for the GP2 validation set. 
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Table 14 reports the performance of both the RF and SVM classifiers on the 

validation data set from July 4.   

 

Table 14: RF and SVM classification results for the GP2 feature set. 

 
Precision 

RF 

Precision 

SVM 

Recall 

RF 

Recall 

SVM 

F1-

score 

RF 

F1-

score 

SVM 

Support 

RF 

Support 

SVM 

High 0.59 0.64 0.91 0.94 0.71 0.76 11 17 

None 1 0 0.25 0 0.4 0 4 1 

Moderate 0.77 1 0.62 0.38 0.69 0.56 16 13 

Macro Avg 0.79 0.55 0.59 0.44 0.6 0.44 31 31 

Weighted 

Avg 0.73 0.77 0.66 0.68 0.66 0.65 31 31 

 

Accuracy  Value Support 

RF  0.68 31 

SVM  0.68 31 

 

 

From this table, it can be seen that: 

▪ High Class: For the High class, SVM has a slightly higher precision (0.64) than RF 

(0.59), suggesting that SVM is marginally better at correctly identifying the High class 

when it predicts an instance as High. In recall, SVM also has an edge (0.94) over RF 

(0.91), indicating that SVM is better at capturing the true High-class instances within 

the dataset. The F1-score, which considers both precision and recall, is higher for 
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SVM (0.76) compared to RF (0.71), confirming SVM's better performance for the High 

class. 

▪ Moderate Class: SVM shows perfect precision (1.0) for the Moderate class, which 

means all instances SVM predicts as Moderate is correct. However, its recall is only 

0.38, indicating it misses a large number of true Moderate-class instances. RF has a 

lower precision (0.77) but a higher recall (0.62), which suggests it captures more of 

the Moderate-class instances and has some false positives. The F1-score is higher 

for RF (0.69) than SVM (0.56), indicating a better balance of precision and recall for 

RF in the Moderate class. 

▪ None Class: RF achieves perfect precision (1.0) but has a low recall (0.25), which 

means it can correctly identify the None class when it predicts it, but it misses 

many actual instances of the None class. SVM, on the other hand, has zero recall, 

indicating it failed to identify any true None-class instances, leading to an F1-score 

of 0. Despite RF's limited recall, its ability to identify some Low-class instances 

gives it a better F1-score (0.4) compared to SVM (0), which completely fails in this 

class. 

The Macro Average precision is significantly higher for RF (0.79) compared to SVM 

(0.55), suggesting RF is more precise on average across all classes. The Macro Average 

recall is also better for RF (0.59 vs. 0.44 for SVM), indicating RF is more effective at 

capturing true positives across the board. The Weighted Average precision is slightly 

better for SVM (0.77) compared to RF (0.73), while the Weighted Average recall is the 

same for both classifiers (0.68), leading to very similar F1-scores (RF: 0.66, SVM: 0.65). The 

overall accuracy for both RF and SVM is the same (0.68), indicating that both classifiers 

correctly predict the class labels for 68% of the dataset. 

While RF and SVM have the same overall accuracy at the GP2 level, RF performs 

better in the Moderate and None classes, particularly in terms of recall. SVM, however, 

performs slightly better in the High class, with better precision and recall. The Macro 

Averages favor RF, indicating that it has a better average performance across all classes, 
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but the Weighted Averages are very similar, reflecting the balanced performance of both 

classifiers when the class distribution is taken into account. 

Classification Based on the GP3 Feature Set 

Figures 24 and 25 illustrate the respective performance of the GP3 RF and SVM 

classifiers on the validation dataset.  
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Figure 24: RF confusion matrix for the GP3 validation set. 
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Figure 25: SVM confusion matrix for the GP3 validation set. 

 

Table 15 reports the performance of both the RF and SVM classifiers on the 

validation data set from July 4.   
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Table 15: RF and SVM classification results for the GP3 feature set. 

 
Precision 

RF 

Precision 

SVM 

Recall 

RF 

Recall 

SVM 

F1-

score 

RF 

F1-

score 

SVM 

Support 

RF 

Support 

SVM 

High 0.71 0.63 0.67 0.71 0.69 0.67 18 17 

None 1 0 0.2 0 0.33 0 5 1 

Moderate 0.46 0.67 0.75 0.46 0.57 0.55 8 13 

Macro Avg 0.72 0.43 0.54 0.39 0.53 0.4 31 31 

Weighted 

Avg 0.69 0.63 0.61 0.58 0.6 0.59 31 31 

 

Accuracy  Value Support 

RF  0.61 31 

SVM  0.58 31 

 

 

From this table, it can be seen that: 

▪ High Class: RF shows a precision of 0.71, higher than SVM's 0.63. This suggests that 

when RF predicts an instance as High, it is more likely to be correct. However, SVM has 

a slightly higher recall (0.71) than RF (0.67), indicating SVM is marginally better at 

identifying all relevant instances of the High class within the dataset. The F1-scores for 

both classifiers are nearly identical (RF: 0.69, SVM: 0.67), suggesting that both 

classifiers have a similar balance between precision and recall for the High class. 

▪ Moderate Class: SVM shows higher precision (0.67) compared to RF (0.46), suggesting 

SVM is more accurate when it labels an instance as Moderate. Conversely, RF 

demonstrates a higher recall (0.75) over SVM (0.46), which suggests that RF is better 
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at detecting the true Moderate-class instances but also has more false positives. RF 

has an F1-score of 0.57, slightly higher than SVM's 0.55, indicating a slightly better 

balance between precision and recall for RF in the Moderate class. 

▪ None Class: RF achieves a perfect precision (1.0) but has a very low recall (0.2), 

indicating it is selective and accurate when predicting an instance as None but failing 

to identify most actual None instances. SVM does not correctly identify any None-

class instances, as evidenced by a recall of 0, leading to an F1-score of 0, which 

indicates a complete miss for the None class by the SVM. Despite its low recall, RF's 

ability to identify some None-class instances results in an F1-score of 0.33, indicating 

a better performance than SVM for the None class. 

The Macro Average precision is substantially higher for RF (0.72) than SVM (0.43), 

indicating that RF is, on average, more precise across all classes. The Macro Average recall 

for RF (0.54) is also higher than SVM (0.39), suggesting that RF captures true positives 

across all classes more effectively. The Weighted Average precision for RF (0.69) is greater 

than SVM's (0.63), and the Weighted Average recall for RF (0.61) is also higher than SVM's 

(0.58). This results in a slightly better F1-score for RF (0.6 vs. 0.59 for SVM), again showing 

a more balanced performance. The overall accuracy is higher for RF (0.61) than SVM 

(0.58), indicating that RF is more effective across the entire dataset. 

In summary, RF generally exhibits a better performance across the High and Moderate 

classes and a significantly better performance for the None class despite its low recall. RF's 

higher Macro and Weighted Average metrics, as well as its higher overall accuracy, 

indicate that it is the more reliable classifier for this dataset at the GP3 level. SVM may 

have its strengths, particularly in precision within the Moderate class, but RF provides a 

more consistent and effective performance overall. 

Classification Based on the GP4 Feature Set 

Figures 26 and 27 illustrate the respective performance of the GP4 RF and SVM 

classifiers on the validation dataset.  
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Figure 26: RF confusion matrix for the GP4 validation set. 
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Figure 27: SVM confusion matrix for the GP4 validation set. 

 

Table 16 reports the performance of both the RF and SVM classifiers on the 

validation data set from July 4.   
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Table 16: RF and SVM classification results for the GP4 feature set. 

 
Precision 

RF 

Precision 

SVM 

Recall 

RF 

Recall 

SVM 

F1-

score 

RF 

F1-

score 

SVM 

Support 

RF 

Support 

SVM 

High 0.59 0.6 0.59 0.88 0.59 0.71 17 17 

None 1 0 0.25 0 0.4 0 4 1 

Moderate 0.38 0.8 0.5 0.31 0.43 0.44 10 13 

Macro Avg 0.66 0.47 0.45 0.4 0.47 0.39 31 31 

Weighted 

Avg 0.58 0.66 0.52 0.61 0.51 0.58 31 31 

 

Accuracy  Value Support 

RF  0.52 31 

SVM  0.61 31 

 

From this table, it can be seen that: 

▪ High Class: The precision for RF is slightly lower (0.59) than for SVM (0.6), which means 

SVM is marginally more accurate when it predicts an instance as High. However, SVM 

significantly outperforms RF in recall (0.88 vs. 0.59), suggesting that SVM is much 

better at identifying all relevant High-class instances. Consequently, the F1-score for 

SVM (0.71) is notably higher than for RF (0.59), indicating a better balance between 

precision and recall for SVM in the High class. 

▪ Moderate Class: SVM exhibits a much higher precision (0.8) compared to RF (0.38), 

which means it is more accurate when it labels an instance as Moderate. RF has a 

higher recall (0.5) over SVM (0.31), suggesting that RF is better at detecting true 

Moderate-class instances but also includes more false positives. The F1-scores are 
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similar but slightly higher for SVM (0.44) than for RF (0.43), indicating a slightly better 

balance for SVM in the Moderate class. 

▪ None Class: RF achieves perfect precision (1.0), indicating it correctly identifies all 

instances it labels as None, but its recall is very low (0.25), which means it misses most 

actual None instances. SVM does not identify any true None-class instances, reflected 

by a recall of 0 and, consequently, an F1-score of 0. RF, therefore, performs better for 

the None class with a modest F1-score of 0.4 due to its ability to identify some true 

None instances.  

The Macro Average precision is higher for RF (0.66) compared to SVM (0.47), indicating 

that RF is more precise across all classes on average. However, the Macro Average recall 

is slightly higher for SVM (0.4) compared to RF (0.45), suggesting that SVM is better at 

capturing true positives across all classes. The Weighted Average precision is higher for 

SVM (0.66) compared to RF (0.58), while the Weighted Average recall is higher for SVM 

(0.61) compared to RF (0.52), leading to a slightly better F1-score for SVM (0.58 vs. 0.51 

for RF). Notably, the overall accuracy is higher for SVM (0.61) than for RF (0.52), indicating 

that SVM is more effective at correctly predicting class labels across the entire dataset. 

For GP4, while RF demonstrates higher precision on average across all classes, SVM 

has a better recall for the High class and a higher overall accuracy. This suggests that SVM 

is more adept at classifying this dataset, particularly for the most represented High class, 

which seems to drive its higher overall performance. Despite RF's perfect precision in the 

None class, its failure to identify the majority of None instances results in its lower overall 

accuracy.  

Classification Based on the Concatenated GPs Feature Set 

Figures 28 and 29 illustrate the respective performance of the GPs RF and SVM 

classifiers on the validation dataset.  

 

 

 

 



 85 

 
Predicted Label 

Tr
ue

 L
ab

el
  

High Moderate None 
High 4 5 8 
Moderate 6 0 7 
None 0 0 1 

 

Figure 28: RF confusion matrix for the concatenated GPs validation set. 
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Figure 29: SVM confusion matrix for the concatenated GPs validation set. 

 

Table 17 reports the performance of both the RF and SVM classifiers on the 

validation data set from July 4.   
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Table 17: RF and SVM classification result for the concatenated GPs feature set. 

 
Precision 

RF 

Precision 

SVM 

Recall 

RF 

Recall 

SVM 

F1-

score 

RF 

F1-

score 

SVM 

Support 

RF 

Support 

SVM 

High 0.24 0.5 0.41 0.6 0.3 0.54 49 85 

None 0 0.08 0 0.4 0 0.13 23 5 

Moderate 0.55 0.42 0.43 0.17 0.49 0.24 83 65 

Macro Avg 0.26 0.33 0.28 0.39 0.26 0.3 155 155 

Weighted 

Avg 0.37 0.45 0.36 0.41 0.35 0.4 155 155 

 

Accuracy  Value Support 

RF  0.36 155 

SVM  0.41 155 

 

 

From this table, it can be seen that: 

▪ High Class: RF has low precision (0.24) and moderate recall (0.41) for the High class, 

resulting in a low F1-score (0.3). This indicates that RF isn't very accurate when it 

identifies an instance as High and misses a significant number of High instances. SVM 

outperforms RF in both precision (0.5) and recall (0.6) for the High class, with a 

substantially higher F1-score (0.54). This suggests that SVM is not only more accurate 

when it predicts an instance as High but also better at capturing more of the true High 

instances. 

▪ Moderate Class: RF shows decent precision (0.55) and moderate recall (0.43) for the 

Moderate class, with a corresponding F1-score (0.49). This indicates that RF is 
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relatively accurate and reliable in identifying Moderate-class instances. SVM has 

lower precision (0.42) and significantly lower recall (0.17) for the Moderate-class 

compared to RF, resulting in a lower F1-score (0.24). This suggests SVM is less effective 

at detecting true Moderate instances. 

▪ None Class: RF fails to identify any None-class instances, with precision, recall, and 

F1-score all at 0. This indicates a significant limitation of the RF model in detecting the 

None class. SVM shows very low precision (0.08) but a higher recall (0.4) for the None 

class, leading to a low F1-score (0.13). While SVM does manage to identify some true 

None-class instances, it also has a high rate of false positives. 

The Macro Average precision is slightly higher for SVM (0.33) than RF (0.26), while the 

Macro Average recall is higher for SVM (0.39) compared to RF (0.28). This could indicate 

that SVM has a slight edge in detecting true positives on average across all classes. The 

Weighted Average precision is higher for SVM (0.45) than for RF (0.37), and the Weighted 

Average recall is also higher for SVM (0.41) compared to RF (0.36). This suggests that SVM 

has a better overall performance when considering the distribution of classes in the 

dataset. The overall accuracy is higher for SVM (0.41) than for RF (0.36), indicating that 

SVM is more effective at correctly classifying instances across the concatenated GP levels. 

In conclusion, SVM generally shows better performance than RF across concatenated 

GP levels, particularly in the High class, which drives its higher overall accuracy. RF has its 

strengths, performing better in the Moderate class, but fails to identify any instances in 

the None class. Despite its limitations, SVM provides a more balanced performance across 

all classes, making it the preferable model in this comparative analysis. 

Discussion 

Table 7 reveals significant insights into the feature selection process for image 

classification tasks. It shows that out of 84 features, less than half (40) are useful for 

classifying the relative abundance of spotted knapweed, which emphasizes the 

importance of feature optimization in image classification. The analysis of RF classifier 

performance as a function of the number of features used for classification, as shown in 

Figures 12 through 17, indicates that increasing the number of features initially benefits 
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model performance up to a certain point. Beyond this optimal number, however, including 

additional features tends to diminish the classifier's effectiveness, underscoring that even 

for models tolerant to multicollinearity, like RF, there's a threshold beyond which feature 

redundancy becomes counterproductive. 

Of all the features considered in this study, the mean NIR and mean red-edge 

reflectance features appear to be the most useful for classifying the relative abundance 

of spotted knapweed, because they are included in the optimal feature sets for all GP 

levels and  the concatenated GPs set. This selection aligns with our understanding of plant 

physiology; the chlorophyll absorption and cell structure reflection properties in these 

spectral ranges are critical for vegetation identification. The consistent selection of these 

features across different scale-space models underscores their robustness and 

importance in capturing the spectral signature of vegetation. Surprisingly, mean red 

reflectance, typically a vital component in traditional vegetation indices like NDVI, is 

absent from the optimized feature sets. This omission might indicate that the models 

leverage other features that capture similar information. For example, the reNDVI, which 

is formulated using NIR and red-edge bands, appears in all but the GP2 feature set, but 

the combination of these higher-wavelength spectra provides a significant capability for 

vegetation classification.  

Green spectral band features, such as the mean and standard deviation of green 

reflectance and, the mean of the green-band GLCM-based entropy, and the range of the 

green-band GLCM-based angular second moment (ASM), appear in half of the optimized 

feature sets. Their presence highlights the role of spatial pattern of green band reflectance 

in capturing vegetation structure and texture, which may be pertinent to distinguishing 

spotted knapweed, especially considering its sparse canopy that allows for shadowing 

effects and visibility of the ground layer.  

Aside from the NIR, red-edge, and certain green band features, most other 

features might be specific to the nuances of particular GP levels. This specificity suggests 

a degree of customization in the feature sets, where each GP level may present unique 

characteristics that require a tailored approach to feature selection. These findings 
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suggest that for remote sensing tasks like vegetation classification, a focused set of well-

chosen features can significantly enhance model performance by capturing essential 

information without overburdening the model with redundant data and that this feature 

set may change depending on the spatial resolution of the available imagery. 

The comparative performance analysis between SVM and RF models on various GP 

levels highlights a significant observation: GP2 outperforms other levels regarding model 

accuracy and balanced F1-scores. With an accuracy of 0.68, GP2 features align 

exceptionally well with the classification objective of discerning the relative abundance of 

spotted knapweed. Intriguingly, the feature set optimized for GP2 is the most compact 

among all GP levels, consisting of only four features. These are: 

• Mean NIR-band reflectance, which is critical for assessing vegetation health as 

it is strongly absorbed by healthy vegetation. 

• Mean red-edge band reflectance, which is a sensitive indicator of chlorophyll 

content and plant stress. 

• Mean green-band entropy, which is a metric of the variability/homogeneity of 

the green-band reflectance, which may relate to the structure of the 

vegetative canopy or the presence of different plant species in close proximity 

to each other. 

• Mean NDVI entropy, which is a metric of variability of the NDVI (itself a 

measure of vegetative vigour) within a metapixel and may relate to sparse 

canopies through which bare soil can be seen. 

The four features that comprise the optimal GP2 feature set leverage data from all 

four of the spectral bands measured by the Sequoia multi-spectral imager (red band data 

is included in the NDVI). The mean reflectance values in the Red-edge, and NIR bands are 

particularly effective because these bands are highly responsive to the presence of 

vegetation. The GLCM-based entropy features (ENT-green and ENT-NDVI) are likely to 

capture the unique textural patterns associated with spotted knapweed's sparse canopy 

and/or groups of heterogeneous plants in close proximity. The irregularity in canopy cover 
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can create shadows and allow glimpses of the sub-canopy vegetation or bare soil, 

contributing to a diverse texture signature. 

The four features that comprise the GP2 optimal feature set construct a classifier that 

outperforms classifiers built using data aggregated at different levels of the GPs or multi-

scale data from all of the GP levels combined.  This suggests that the models built with 

GP2 data are leveraging both the spectral signatures of the vegetation and the textural 

context provided by the surrounding environment, which includes shadows and sub-

canopy elements. The optimal feature set at GP2 appears to strike a balance, improving 

classification by reducing the signal-to-noise ratio through spatial averaging in the spectral 

data. This improvement to the signal-to-noise ratio would not only emphasizes the 

spectral signatures but also enhance the classifier's ability to differentiate between 

spotted knapweed and other vegetation.  It also opens up the possibility of refining the 

feature selection process to hone in on those attributes that most effectively capture the 

characteristics of the target species, potentially leading to even more streamlined and 

efficient models. 

The GP2 features correspond to a GSD of 11.6 cm, which is 4 times larger than the 

original image resolution of 2.9 cm. This specific GSD appears to strike a balance between 

detail and abstraction, providing an optimal scale for the classification task at hand. Data 

at finer resolutions (lower GSD) may contain more noise due to measurement error or 

overly intricate spatial details that could complicate the classification process, whereas 

coarser resolutions (higher GSD) may lack the requisite spatial detail for distinguishing 

between different classes. The results suggest that, within the context of this study, 

smoothing the data to 11.6 cm spatial resolution increases the signal-to-noise ratio of the 

input features, allowing the classifiers to produce more accurate results with the fewest 

number of descriptive features compared to the other feature sets considered in this 

work. 

The results obtained from concatenating GP levels, however, have led to an 

unexpected outcome that contrasts with the findings of Roberti de Siqueira et al. (2013), 

who showed that a multi-scale representation of image features often produces higher-
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performing classifiers. The anticipated advantage of a multi-scale feature set that 

leverages information from various scales did not materialize. Instead, the GPs models 

exhibited diminished accuracy, with the RF classifier achieving only 0.38 and the SVM 

classifier faring slightly better at 0.41. Such outcomes suggest that the multi-scale 

concatenation diluted rather than enriched the discriminative capability inherent to the 

features at individual levels. This dilution effect implies that the distinct and nuanced 

patterns captured by each GP level's features, which might be critical for effective 

classification, lose their impact when combined. This reduction in performance highlights 

a potential discrepancy between theoretical expectations and empirical realities, 

suggesting that the synergistic potential of concatenated multi-scale features may not 

always hold true across different datasets or classification frameworks. It is also possible 

that recursive feature selection is not able to identify a truly optimal feature set given the 

volume and multi-collinearity of these features.  Recursive feature selection is a greedy 

feature optimization heuristic that could lead to degraded performance if many features 

have similar importance metrics.  This could be overcome using a global optimization 

method like a genetic algorithm (Goldberg, 1994). 

In conclusion, this study underscores the significance of selecting an appropriate 

scale, especially when integrating data sources like GLCM and GP. The superior 

performance at the 11.6 cm GSD demonstrates the critical role of resolution in image 

classification tasks.  

Mapping Spotted Knapweed at Site 3 

To see the impact of selecting the optimal scale-space representation of the RPAS-

acquired imagery for image classification, maps of the relative abundance of spotted 

knapweed are from spectral data at GP0 and GP2 levels of aggregation collected at Site 3 

on July 4. These datasets were withheld from the model-building process, and labeled 

examples were only utilized to calculate the classifiers' performance metrics (e.g. in Table 

12).  

An aerial photograph of Site 3 taken during the July 4 imaging flight is shown in Figure 

30. This figure shows that there is a diagonal pattern of green vegetative growth that 



 92 

slopes from the top left to the bottom right. Dense green vegetation also dominates the 

top right and bottom left corners of the image., while a strip of reddish-grey vegetation 

runs through the middle of the image. The dark green vegetation is mostly spotted 

knapweed interspersed with other vegetation, while the reddish-grey vegetation is a 

patch of cheatgrass (Bromus tectorum L), another invasive species common in British 

Columbia’s grasslands. 

Figure 31 was constructed by applying the GP0 RF classifier to the Site 3 data. This 

classifier replicates the results presented by Baron and Hill (2020). This figure has a high 

degree of speckling (i.e. single metapixels with a category that is different from the 

surrounding metapixels) in the none and moderate categories. The VNIR image in Figure 

30 does not reveal much patchiness, so this speckle is likely an artifact of the classifier.  

The precision of the GP0 for classifying Moderate and None categories of spotted 

knapweed is 0 and 0.46, so this speckling is likely due to false positive classifications.  

Furthermore, the recall of the moderate category is 0, which gives no confidence in these 

classifications. 

Figure 32 was constructed by applying the GP2 RF classifier to the Site 3 data.  Based 

on the results of this study, this classifier uses the optimal scale-space representation of 

the image data. This image exhibits much less speckle than Figure 31.  Instead, there is 

more contiguity between pixels in each class forming larger aggregate groupings which 

follow the diagonal patterning visible in VNIR image (Figure 30).  The precision of the 

moderate and none classes for this classifier is much higher than for the GP0 RF classifier, 

which leads to more confidence in these classifications, though the recall of the moderate 

class is still quite low. The map of spotted knapweed made with the GP2 RF classifier 

(Figure 32) shows smoother transitions between different abundance classes, whereas 

the transitions between classes in the map made by the GP0 RF classifier are abrupt. This 

result suggests that the GP2 scale-space representation of the image data better describes 

the transitions in knapweed distribution. 

When comparing the predicted area of spotted knapweed abundance, the GP0 RF 

model (Figure 31) classifies 8,358 square meters as High, 2,926 square meters as 
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Moderate, and 2,636 square meters as None, whereas the GP2 RF model (Figure 32) 

classifies 20,288 square meters as High, 25,984 square meters as Moderate, and 9,408 

square meters as None.  The adoption of the GP2 data suggests that when the image data 

is represented at a scale that incorporates a moderate level of smoothing—enough to 

reduce noise and enhance the meaningful signal—it results in a more accurate depiction 

of the knapweed's spatial distribution. This scale-space optimization allows the GP2 RF 

model to capture essential characteristics of the knapweed's presence, which might be 

missed at the finer, less-smoothed GP0 level. The more pronounced smoothing inherent 

in the GP2 data likely helps to suppress irrelevant variations, thereby strengthening the 

model's ability to detect the true signal of knapweed abundance. This optimized scale-

space representation is key to producing a more reliable and comprehensive map of 

knapweed distribution, which is crucial for effective monitoring and management of this 

invasive species. 
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Figure 30: True-colour image from flight data collected at field site 3 on July 4, 2018. 
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Figure 31: RF Classification map generated using GLCM-GP0 meta pixel-based image analysis, 

illustrating the relative abundance of spotted knapweed. 
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Figure 32: RF Classification map generated using GLCM-GP2 meta pixel-based image analysis, 

illustrating the relative abundance of spotted knapweed. This level demonstrates the highest 

accuracy. 



 97 

Conclusion 

This study explored scale-space representations of remote-sensed images to 

identify optimal features and their relationship with spatial scale, contributing to the 

understanding of how these representations affect the accuracy of vegetation prediction 

models. 

The identification of mean NIR reflectance and mean red-edge reflectance as 

significant features across all GP levels is a pivotal finding, emphasizing their importance 

in capturing the distinctive spectral characteristics of vegetation. These features are 

particularly sensitive to chlorophyll content, a key indicator of plant health, and the cell 

structure of vegetation, which is crucial for differentiating between various plant species 

and conditions. That these two features were selected across different scale-space 

representations of the image data indicates their importance for identifying and 

quantifying the relative abundance of spotted knapweed. 

Upon examining the classification models, including both RF and SVM, it is evident 

that the GP2 level exhibits superior performance in terms of accuracy. Notably, the 

Ground Sample Distance (GSD) of the imagery from the GP2 level, at 11.6 cm, contrasts 

with the 2.9 cm GSD of the raw imagery. This difference suggests that the smoothing 

inherent in the GP2 data, which reduces noise and minor variations that may not be 

relevant to the classification task, likely contributes to improved performance. The GP2 

level, with its moderate smoothing, seems to strike an optimal balance between 

preserving critical information and reducing extraneous detail that could confuse the 

model. These results carry significant implications for remote sensing analysis. They 

challenge the conventional approach that typically relies on the raw sensor resolution to 

dictate the scale of analysis, suggesting instead the potential benefits of scale-space 

analysis. By optimizing the scale of feature extraction, it is possible to enhance the 

accuracy of vegetation classification models. Moreover, our findings refute the common 

assumption that lower spatial-resolution data inherently yields inferior results, which 

drives RPAS-based remote sensing surveys to be conducted to achieve the highest spatial 

resolution data that is practicable to acquire. In fact, the enhanced performance at the 
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GP2 level implies that a compromise in spatial resolution does not necessarily equate to 

a loss in the quality of analytical outcomes. Consequently, the RPAS data acquisition could 

have been conducted at a higher elevation above the land surface—around 200 m (rather 

than 30 m)—resulting in an imagery resolution of 11.6 cm. This adjustment in flight height 

would have increased the overall size of the scene capture in each RPAS-acquired image, 

which would have reduced the total number of images that needed to be captured to 

complete the survey, thereby increasing the speed with which the data was acquired. Such 

an approach would enable the imaging of larger areas within the same flight time, 

significantly improving the operational efficiency of the vegetation monitoring efforts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 4 Conclusion 

& Future works 

 

 



 

Conclusion 

The principal aim of this research was to explore the value of scale-space 

representations of image features to predict the abundance of spotted knapweed within 

grassland ecosystems. Specifically, this work sought to determine if there was an optimal 

spatial resolution for image features or if multi-scale representations of features could 

improve the prediction of spotted knapweed abundance using spectral and grey-scale 

colocation matrix (GLCM)-based textural features. The Gaussian Pyramid (GP) method 

was instrumental in determining the spatial resolution that encapsulates the critical data 

for robust predictive modeling. Notably, this work shows that image features derived from 

the second level of the gaussian pyramid (GP2 level) produced classifiers that 

outperformed classifiers trained using the base-resolution image data or image data 

aggregated to other spatial scales.  At the GP2 level, features are derived from image data 

with 4-times lower spatial resolution than the original data.  Interestingly, this research 

showed that classifiers trained using GP2 data produced better results than classifiers 

trained using multi-resolution data from all levels in the GP.  This latter result contradicts 

the work of Roberti de Siqueira et al. (2013), who showed that a multi-scale 

representation of image features often produces higher-performing classifiers. I suspect 

that this result may be due to the relatively few training examples (N=150) compared to 

the number of features across the entire scale space (N=420). 

Contrary to the typical remote-sensing approach that equates higher spatial 

resolution with improved analytical performance, our study proposes that an 

intermediate resolution, as represented by GP2, may provide a more accurate reflection 

of ground realities by filtering out noise and minor variations that do not contribute to the 

species' identification. 

The implications for grassland management are profound. Accurately predicting 

the abundance of spotted knapweed, a virulent invasive species, enables resource 

managers to deploy control treatments more judiciously, concentrating on areas heavily 

invaded and conserving efforts in regions with lower incidence. This study illustrates scale-

space analysis's potential to increase invasive species mapping accuracy and bolster the 
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efficacy of ecological management tactics.  More accurate invasive species mapping 

significantly contributes to grassland management in the following areas: 

▪ Early Detection and Rapid Response: The model's precision in identifying spotted 

knapweed at is pivotal for detecting invasions early, crucial for rapid response actions 

to halt the spread before establishment. 

▪ Precision Management: Precise spatial estimates of spotted knapweed abundance 

allow for targeted management. This enables more efficient allocation of resources 

like herbicides, labor for manual removal, and biocontrol agents, focusing on priority 

areas and reducing non-target impacts. 

▪ Monitoring Treatment Efficacy: Post-treatment monitoring is vital for evaluating 

management success. Accurate maps of spotted knapweed abundance derived from 

pre- and post-intervention remote sensing imagery can be compared to compute 

intervention success metrics. 

▪ Adaptive Management: Invasive species management is dynamic, requiring 

adaptation to change. The invasive species mapping method developed in this work 

supports continuous monitoring, yielding data to inform adaptive management 

decisions and strategy adjustments. 

▪ Habitat Restoration Planning: By delineating spotted knapweed's spatial distribution, 

the model supports restoration planning, identifying reintroduction sites for native 

species and guiding restoration efforts to restore native plant community structure 

and ecosystem functions. 

▪ Cost-Effective Surveying: The case study explored in Chapter 3 revealed that the 

optimal image resolution for the mapping of spotted knapweed abundance was four-

times larger than the resolution at which the imagery was acquired. This result 

suggests that the images could have been acquired at a much higher flight level.  Flying 

a remote sensing platform (e.g., a remotely piloted aircraft system, RPAS) at a higher 

flight level will enable the acquisition of images with a larger field of view, reducing the 

time required to image a fixed spatial extent.  Thus, by tuning the flight level to the 

optimal spatial resolution for image analysis, larger areas can be surveyed more 
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economically, enabling more frequent surveys and better-informed management 

decisions. 

In conclusion, the application of this model within grassland management 

programs can significantly enhance the effectiveness of spotted knapweed control and 

mitigation efforts. Its integration into routine monitoring practices represents a proactive 

step towards sustainable management of grassland ecosystems.  

While the model devised in this study is tailored to a specific species and may not 

directly translate to other species, the underlying modeling framework I have established 

has the potential for broader application. To adapt this approach for a different species, it 

would be essential to fine-tune the features and hyperparameters to align with the unique 

spectral characteristics and spatial distribution patterns of the new species. Additionally, 

this research indicates that determining the optimal scale for analysis by identifying the 

most effective GP level is crucial. With these customizations, the updated model could 

then be utilized to map the presence of the new target species across extended regions.  

Future work should focus on refining the categories used to define the relative 

abundance of spotted knapweed through additional data collection and stratified spatial 

sampling methods, evaluating the generalizability of the models developed using this 

method over larger spatial extents, and extending its application to other invasive species 

and habitat types. Additionally, the development of user-friendly tools and interfaces for 

land managers to utilize this model can facilitate its widespread adoption in conservation 

and land management sectors. 

Future Work - Expanding Methodologies 

As we progress, multiple prospects for continued research and enhancement in 

this field emerge: 

 Generative Adversarial Networks for Training Data Augmentation 

The exploration of generative adversarial networks (GANs) to supplement the training 

dataset constitutes a significant direction for future research. The necessity for a balanced 

training set in this study was imperative to avoid category bias. To achieve a balanced 
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training set, however, the data available for training we down sampled selecting only as 

many examples of each category as were available in the minority class. This resulted in a 

small training set size of 150 examples. With such a small number of training examples, 

the machine learning classifiers used in this study (i.e. random forest and support vector 

machine) would not be able to utilize the information available from a large set of input 

features, such as the 84 features used in the single GP-level models. 

A GAN is a framework for generative artificial intelligence, in which two artificial neural 

networks (ANNs) compete against each other.  One ANN, the generator, seeks to create 

synthetic examples that match a pattern in input data, while the other Ann, the 

discriminator, seeks to discriminate between examples synthesized by the generator and 

those existing in the input set. The introduction of GANs could address the limitation of a 

small training set size by generating synthetic yet plausible training examples that mimic 

the patterns in the true training examples. Employing a GAN to oversample the true 

training data could enhance the training process without the associated risk of overfitting 

that sample duplication entails. This technique allows for the expansion of the training set 

size, potentially increasing it to 300 samples, evenly distributed across classifications. Such 

expansion could bolster the model's generalization and fortify the predictions of spotted 

knapweed prevalence. 

Feature Optimization through Data Compression 

Data compression methods like Principal Component Analysis (PCA) and 

autoencoders represent an avenue for refining feature selection in future research 

endeavors. Although recursive feature elimination with cross-validation (RFECV) has 

demonstrated efficacy in identifying an optimal feature set in this research, PCA and 

autoencoders present alternative means for isolating pivotal features within a dataset. 

PCA can decrease the dimensionality of data while retaining significant variance, 

which may reveal the data's intrinsic structure. Autoencoders, which are specialized ANNs, 

use a deep network to encode input data efficiently in a central encoding layer and 

subsequently reconstruct output from this encoded information. Training autoencoders 
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can lead to the extraction of a feature set that encapsulates the essential details necessary 

for precise predictions. 

These techniques are especially beneficial in high-dimensional data scenarios, 

aiming to distill the feature set without forfeiting pertinent information critical to the 

classification task. Compressing the feature space could aid in distilling the relevant multi-

scale features present throughout the scale-space resulting in a more streamlined set of 

input features for evaluation with RFECV. Not only will this reduce the computational 

demand of classifier training, but it could also result in the learning of more accurate 

classifiers. Such advancements could markedly improve the mapping and monitoring 

processes for invasive species like spotted knapweed in grassland ecosystems. 

The assimilation of these sophisticated methodologies is anticipated to expand the 

toolkit available for remote sensing analyses and species distribution modeling. Future 

studies can build upon the groundwork established by this thesis to further enhance our 

proficiency in ecological conservation and management, safeguarding the fragile 

equilibriums in our natural habitats. 

Other suggestions 

Deep learning approaches, such as convolutional neural networks (CNNs), and 

their performance analysis across various spatial resolutions could provide additional 

insights and might even lead to the automation of identifying the optimal spatial scale for 

feature extraction. 

Exploring scale-space representations of other image datasets, like hyperspectral 

imagery, could enrich the dataset and potentially improve classification models. With 

continuous advancements in sensor technology, assessing their performance across 

different scales will be essential, including the impact of new sensors on scale-space 

representation and feature selection. Future research should also consider the 

operational implications, such as the effects of altering flight altitude on the efficiency and 

cost-effectiveness of RPAS-based imaging surveys. 

The concepts derived from this study might also have more extensive applications 

in spatial analysis, extending to urban planning, disaster management, and geological 
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surveys. By delving into these areas of future work, the field can evolve toward more 

sophisticated, precise, and efficient environmental monitoring and analysis methods. The 

ultimate aim is to establish a set of best practices for scale-space representation in remote 

sensing that can be tailored to diverse situations and applications. 
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